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University o f Washington 

Abstract

ESSAYS ON THE DECOMPOSITION 
OF MACROECONOMIC TIME SERIES 

INTO PERMANENT AND 
TRANSITORY COMPONENTS

by Christian Joseph Murray

Chairperson of the Supervisory Committee: Professor Charles Nelson
Department of Economics

This dissertation is comprised of three essays on modem macroeconometrics. 

The first essay takes issue with the conclusion of recent papers that U.S. output is 

trend stationary. It is shown that tests of the null hypothesis of a unit root against the 

alternative of trend stationarity are sensitive to data-based lag selection and 

departures from the maintained hypothesis of temporal homogeneity
*

Specifically, time series which contain a unit root may appear to be trend 

stationary if they are perturbed by large additive outliers. This generates the false 

appearance of trend stationarity. There is overwhelming evidence against the 

hypothesis of trend stationarity in the post-war data. Also, the implied business cycle 

is implausible.

The second essay extends the framework of dynamic factor models by specifying 

two common factors. Both common factors are subject to changes in regime. This 

allows for asymmetry in both the common permanent and common transitory 

components of time series. Previous work with dynamic factor models has restricted 

asymmetry to only the permanent component of a time series. This assumes a priori 

that recessions cause permanent damage. In light of recent evidence which suggests 

that recessions only temporarily lower output, we allow for the possibility that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

source of business cycle asymmetry is the common transitory factor. With the 

exception of the 1990-91 recession, which appears to be entirely permanent, we find 

that five of the six recessions from 1959 to the present are comprised of both 

permanent and transitory variation. Our parameter estimates imply that a six month 

recession permanently lowers the level o f industrial production by 2 .8 6 %.

The third essay proposes a variety of statistics which test the hypothesis that a 

time series contains a point o f structural change and/or has a unit root. Regarding 

tests for structural change, the literature is incomplete. A complete cataloging of 

these tests is undertaken. Also considered are statistics which test the joint hypothesis 

o f a unit root and no structural change. While these have the potential to offer an 

increase in power over statistics which ignore the unit root hypothesis, this is 

generally not found to be the case.
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pleasure that I shall always remember.
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CHAPTER 1: THE UNCERTAIN TREND IN U.S. GDP

LI Introduction

Several recent papers have brought the literature full circle on the issue of 

whether the trend in U.S. real GDP is deterministic or stochastic. The modeling of 

aggregate output as transitory fluctuation around a deterministic trend was routine in 

empirical work until Nelson and Plosser (1982) showed that data for 1909-70 were 

consistent with the hypothesis that the trend is instead a non-stationary stochastic 

process akin to a random walk. Such processes contain a unit root in their 

autoregressive representation and require first differencing for stationarity. The model 

estimated by Nelson and Plosser implies that the stochastic trend contributes more to 

the variation in output than does the transitory component. They argued that an 

economic implication of this finding is that real shocks are much more important than 

previously thought, since it is presumably real shocks that impact the trend while 

monetary and fiscal shocks have only transitory effects.

Perron (1989) argued that by failing to allow for structural change, Nelson and 

Plosser vastly overstated the frequency of permanent shocks. He found that the same 

data reject the stochastic trend hypothesis in favor of the deterministic alternative if a 

break in the level of the trend is allowed to occur at 1929. His model implies that 

there has been one permanent shock to output during the 1909-70 period, that being a 

negative one, and that all other shocks have been transitory. Zivot and Andrews
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(1992) showed that this finding still holds after critical values are adjusted to reflect 

data-based selection of the break date.

More recently, Ben-David and Papell (1995), Cheung and Chinn (1997), and 

Diebold and Senhadji (1996) have conducted tests with longer time series, extending 

U.S. output data back to 1870 and forward to the more recent past. All find that the 

longer time series strongly reject the stochastic trend hypothesis in favor of a 

deterministic trend without breaks. The implicit argument in these papers is that 

rejection of the unit root hypothesis can be attributed to an increase in power derived 

from a longer sample. These papers would thus suggest that as more data has become 

available, the evidence has become sharper, pointing now in the direction of 

determinism, leaving no role for permanent shocks.

Whether the trend in aggregate output is deterministic or stochastic has far- 

reaching implications for modeling the economy and for judging the success of 

macro-stabilization policy. The deterministic trend view implies that it is only 

because of transitory shocks, presumably primarily monetary and fiscal in origin, that 

the economy deviates from a smooth, constant-growth-rate path. The performance of 

monetary policy should then be measured by its success in achieving small departures 

from that path. If, on the other hand, shocks to the trend component are an important 

source of macro-economic fluctuations, then the modeling and identification of real 

shocks becomes critical for the conduct and evaluation of monetary policy. The two 

views of trend also have strikingly different implications for long run uncertainty: 

under the deterministic view, long run uncertainty is limited by the stationarity of the
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cycle, while under the stochastic trend view, uncertainty about future output grows 

without bound.

This paper examines the robustness of recent findings with respect to two issues: 

the finite sample implications of data-based model specification and the effect on test 

size of plausible departures from the maintained hypothesis that the data are 

generated by a homogeneous process. Section 1.2 of the paper reviews standard unit 

root tests on U.S. real GDP 1870-1994 and examines the data for homogeneity across 

sub-periods. Section 1.3 presents Monte Carlo experiments designed to study the two 

issues of size and robustness to departures from homogeneity. Section 1.4 focuses on 

the evidence from the post-war period which we regard as more likely to represent a 

homogeneous sample. Section 1.5 summarizes our results and presents our 

conclusions.

1.2. Trends and Non-homogeneity in U.S. real GDP

The evidence against the stochastic trend view is reflected in the test statistics 

shown in Table 1.1 for the annual U.S. real GDP series, 1870-1994, assembled by 

Maddison (1995). Before interpreting these results, we briefly review the tests and 

their maintained hypotheses.

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979) developed a test of 

the null hypothesis that a unit root in the AR representation, rather than a 

deterministic trend, accounts for the non-stationarity of a trending time series. The 

Dickey-Fuller test runs the regression
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y, =py,-x + a+ fi+'L<t>,Ay,-,+£,-
t= i

Under the unit root null, p=l, the first difference is a stationary AR process and 

the series is said to be “difference stationary” in the parlance of Nelson and Plosser. 

Under the alternative hypothesis p<l, the series is “trend stationary,” a stationary AR 

process added to a deterministic linear trend. Dickey and Fuller showed that the t- 

statistic for testing p=l has a non-standard distribution, and they tabulated Monte 

Carlo critical values for various sample sizes for a random walk with i.i.d. Normal 

shocks. They show that the limiting distribution remains the same when k  lagged first 

differences “augment” the model to account for serial correlation (see also Hamilton 

(1994)).

In practice the lag length k, is unknown and is chosen by a data-dependent 

procedure. Building on work later published in Hall (1994), Campbell and Perron

(1991) suggested starting with a maximum value of k chosen a priori, deleting lags 

until encountering a t-statistic indicating significance at the . 1 0  level (greater than 

1.645 in absolute value). This general-to-specific (GS) procedure has been followed 

by Perron (1989), Zivot and Andrews (1992), and others. Theoretical support for GS, 

as well as for various information criteria, was provided by Hall for the pure AR case 

and by Ng and Perron (1995) for the ARMA case. They showed that if the maximum 

lag allowed is at least as large as the true lag, then asymptotically inference is 

unaffected by the data-based lag selection.
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Since we will be interested in departures from the maintained hypothesis of i.i.d. 

shocks in Dickey-Fuller, we also include the heteroskedastic-consistent unit root test 

of Phillips and Perron (1988). This test does not rely on a finite order AR 

representation, but instead employs a correction for serial correlation based in part on 

the spectral representation of the innovation sequence at frequency zero. The 

quadratic spectral kernel is used to estimate the spectrum, and Andrews’ (1991) 

selection procedure is used to determine the number of autocovariance terms included 

in forming the estimate of the spectrum. The Phillips-Perron test has the same 

limiting distribution as the Dickey-Fuller test.

Perron (1989) provided a generalization of the Dickey-Fuller test to allow for the 

possibility of structural change taking the form of a one-time break in level, or slope, 

or both. In the case of a break in level only, which he considered appropriate for U.S. 

real GNP, the Perron test adds step and impulse dummy variables to the Dickey- 

Fuller regression:

y, =py,-i +a + /3t + 5>,.Ay,_t + SS(b), +yl(b), +e,.
I

where S  is zero through year b and one thereafter, and /  is one in year b+J only and 

zero otherwise. Under the unit root hypothesis, the impulse dummy accounts for a 

break in level, while under trend stationarity alternative, the step dummy does. Perron 

provided critical values under the maintained hypotheses that the break date is 

known, the innovations are i.i.d. Normal, and lag k is known.
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The test of Zivot and Andrews (1992) differs from the Perron test in two regards. 

First, the null hypothesis is that the series has a unit root and does not contain a break; 

accordingly, their test regression does not include an impulse dummy. Second, Zivot 

and Andrews recognize that the break date is unknown a priori and estimate it to be 

that which maximizes the absolute value of the unit root test statistic. The test 

regression is

y, = py,-x + « + +  Z  (£), + e,
1=1

where b is the estimated break date. Zivot and Andrews tabulate Monte Carlo critical 

values for t(p=l) in the case of a random walk with i.i.d. Normal innovations and 

where k is assumed known to be zero. They confirmed Perron’s choice of 1929 as the 

break date and his rejection of the unit root hypothesis for the Nelson-Plosser real 

GNP series. In practice, k is unknown and Zivot and Andrews did a GS search at each 

potential break date.

Leyboume and McCabe (1994) have developed a test of the null hypothesis that a 

series is trend stationary, with difference stationarity (a unit AR root) being the 

alternative hypothesis. They assume that the series has an unobserved components 

representation where the trend is a random walk, the stationary component is AR(k), 

and the innovations are independent across components and are i.i.d. This implies that 

the univariate representation of the first differences is ARMA(k,l) and the MA part 

will have a unit root if the trend is deterministic (zero variance in the random walk). 

Critical values for the Leyboume-McCabe test are tabulated in Kwiatowski et al.
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(1992). As in the Dickey-Fuller test, the Leyboume-McCabe test necessitates the 

preliminary step of selecting the lag length k to account for serial correlation. 

However, under the null hypothesis the series follows a non-invertible ARMA(k,l) 

process. The distribution of the AR terms is thus unknown. Therefore, in contrast to 

the Dickey-Fuller test, there does not exist a set of results which guarantees that 

inference based on the Leyboume-McCabe test is asymptotically unaffected by data- 

based lag selection.

Results of these tests are reported in Table 1.1 for the full Maddison sample and 

the sub-period 1909-1970 studied by Nelson and Plosser. The lag length is chosen 

alternatively by GS and Schwarz1 (1978) information criteria (SIC). Following Perron 

and Zivot and Andrews, the maximum lag we consider for annual data is 8 . As noted 

before, if the true lag is less than or equal to 8 , the results o f Hall (1994) and Ng and 

Perron (1995) state that in the limit, both GS and SIC will choose the correct lag with 

probability one. The Zivot-Andrews procedure identifies 1929 as the break date for 

both time spans. P-values are obtained by simulation as in the original articles; the 

DGP under the null hypothesis is a random walk for the unit root tests and a trend 

plus random error for Leyboume-McCabe.

Several features of the results seem worthy of note:

1. The null hypothesis of a unit root is strongly rejected by all three tests for 
the Maddison data. The Dickey-Fuller test for the sub-period studied by 
Nelson and Plosser is less favorable to the unit root hypothesis than they 
reported using data available prior to the work of Balke and Gordon.

2. Evidence against a unit root is stronger for the full time period.
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3. Rejection of the unit root null is stronger when a break is allowed if the 
break date is assumed known.

4. The choice of lag k differs greatly between GS and SIC selection, the 
former often choosing the maximum allowed while the latter in every case 
chooses only one lag.

5. Lag selection matters for inference. For the Perron and Zivot-Andrews 
tests, GS lag selection leads to stronger rejection of the unit root. For the 
Leyboume-McCabe test, lag selection determines the outcome. SIC does 
not lead to rejection of trend stationarity (as reported by Cheung and 
Chinn, 1997), but GS does.

6 . The step dummy is highly significant by conventional standards in every 
case However, Baneijee, Lumsdaine, and Stock (1992) demonstrate that 
the distributions of break-dummy coefficients are non-standard.

These tests have as maintained hypothesis that the series is homogeneous, 

generated by an AR process of known order with constant parameters and i.i.d. 

Normal innovations. It is not clear how deviations from these maintained hypotheses 

might affect size or power, although recent contributions to the theoretical literature, 

discussed below, suggest that they will. This is a concern in the context of U.S. GDP 

since 1929, when methods of data collection change, the Great Depression, and 

World War II are points at which the GDP data process might be expected to exhibit 

changes in both volatility and serial correlation.

For the period to 1929, Maddison used estimates by Balke and Gordon (1989); an 

alternative series is by Romer (1989). Both build on the pioneering methodology of 

Kuznets (1941,1946) and extensions by Kendrick (1961) and Gallman (1966). 

Briefly, the Kuznets methodology relies on trends extrapolated between benchmark 

years, then deviations from trend are based on indicator variables such as commodity
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output. It would be surprising if this method did not affect serial correlation and unit 

root tests. Indeed, the Dickey-Fuller test applied to the Balke-Gordon data rejects the 

unit root at the 1 0 % level.

The period immediately following 1929 was one of banking failures on an 

unprecedented scale and repeated failure of the new Federal Reserve System to 

stabilize the system (Friedman and Schwartz, 1963). By the time the economy had 

recovered from the Great Depression it was jolted by World War n. The magnitude 

of these shocks is apparent in Figures 1.1 and 1.2 for levels and growth rates, and in 

the summary statistics in Table 1.2 for growth rates and deviations from the least 

squares trend line. The largest observations during the Depression-WWII period are 

three to four times the sample standard deviation measured over the full period. Fitted 

AR(3) models reveal large changes in serial correlation and much higher residual 

variance during the 1930-45 sub-period. The extremely small probability of this 

occurring in a homogeneous Normal sample is reflected in the asymptotic Jarque- 

Bera p-values of zero for the full sample. The three fold increase in the standard 

deviation of shocks is comparable to that for stock returns reported by Schwert 

(1989b). Separating pre-1929, 1930-45, and post-war periods, however, one obtains 

apparently homogeneous Normal samples.

More formal evidence on non-homogeneity comes from an extension of the Clark 

(1987) model in which stochastic trend and cycle components are augmented by an 

additive irregular component that switches on and off according to a Markov process. 

Details are given in Appendix A and in Murray (1997). As seen in Figure 1.3, the
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irregular component switches on in 1893, but shows only small fluctuations until

1930 when it reflects the huge swings in output of the Depression and WWII. Then it

switches off in 1947. This pattern is consistent with larger measurement errors in the

pre-1929 data and the 1930-46 period characterized by a sequence o f additive outliers

that do not occur elsewhere. Further, the cyclical component is no longer significant

once this irregular component is included in the model. Our results are consistent with

those o f Balke and Fomby (1991) who also identified additive outliers associated with

the Depression and World War II, but failed to detect permanent breaks in level.

1.3 The Sensitivity o f  Unit Root and Trend Stationarity Tests to Lag Selection and 
Additive Outliers

1.3.1 Design o f the Experiments

This section presents a series of experiments designed to investigate how tests for

a unit root or trend stationarity are affected by data-based lag selection and departure

from the i.i.d. Normal assumption in the form of additive outliers. Our strategy is to

specify a data generating process for 1870-1994 that contains a unit root and

replicates the main statistical features of post-war GDP and use it to study size or

power under GS and SIC lag selection, then introduce various types of additive

outliers to see what effect they have on the tests. Our choice of the post-war data as a

guide to the DGP is based on the results of the Markov-switching state-space model

discussed above. We do not attempt to model the measurement errors in the pre-1929

data.
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For the post-war Maddison data in first differences of logs, SIC chooses 

ARMA(0,0) and AIC chooses ARMA(1,0). We adopt the AR(1) model to include 

some dynamics. The estimated model, and our underlying DGP, is:

Ay, = .17 Ay,_x + .027+ £,

e, ~ i.i.d. N(0,0.025)

This DGP is run for 20 periods before recording a realization corresponding to 1870- 

1994. After integrating the first differences to obtain levels, we add one of a number 

of types of outliers to see its effect on the test statistics. The observed data, say y*, is 

then

y, = y , + o ,

where the outlier sequence {Ot} varies across experiments. Two panels give results 

for sample lengths of 125 and 62 years corresponding to the full 1870-1994 period 

and the Nelson-Plosser 1909-1970 sub-period, respectively, based on 1,000 

replications. The upper bound for the standard error o f the rejection frequencies we 

report is .016 (see Davidson and MacKinnon (1993)).

In the first experiment, reported in Table 1.3, we have subtracted a fixed quantity 

from the level of simulated log real GDP in 1930 only. The value of O 1930 ranges in 

successive experiments between 0 and -.4, the latter representing a one third reduction 

in output. The dip lasts for only one year, so the observed series resumes its 

underlying path in 1931 with no permanent change in level. In the second experiment,
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reported in Table 1.4, we consider outlier events that begin in 1930 and then follow 

either fixed or stochastic paths.

Reported in each table are actual frequencies of rejection of the unit root 

hypothesis at a nominal .05 significance level based on critical values reported in 

Fuller (1976), Zivot and Andrews, and Perron (with corrections to the Perron critical 

values by Zivot and Andrews), respectively. For the Perron and Zivot-Andrews tests 

the critical values are asymptotic, but for the Dickey-Fuller test the finite sample 

critical values are exact if k  is known to be zero and the innovations are Gaussian. We 

also report the frequency with which the t-statistic for the step dummy in the Perron 

and Zivot-Andrews regressions is significant at the conventional nominal .05 level.

In the case of the LM test, the null hypothesis is trend stationarity, so the 

frequency o f rejection is the power of the test against the alternative represented by 

our DGP. Since these frequencies are meaningless unless the size of the test is 

correct, we follow Cheung and Chinn in setting critical values by simulation of the 

trend stationary AR model suggested by the historical data.

The number of lagged first differences included in any of these regressions, 

denoted k, is selected alternatively by GS and SIC procedures described above. Note 

that in searching for the break date in the Zivot-Andrews test, the selection of fc is 

repeated at every potential break date.

1.3.2. The Effect o f  Data-based Lag Selection on Test Size or Power

In the experiment reported in the first line of each panel of Table 1.3, no outlier 

has been added. In this case the series does in fact have a unit root with i.i.d. Normal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

innovations, so the frequency reported for each unit root test is its actual size, the 

probability of rejecting the null hypothesis at a nominal .05 level when it is true. As 

reported previously by Hall (1994) for the Dickey-Fuller test, size depends 

importantly on the method of lag selection. In the case of the Dickey-Fuller and 

Perron tests, SIC produces roughly the correct size, while GS results in a size of about 

.10. The Zivot-Andrews test suffers from greater size distortion under both lag 

selection strategies, and the distortion is entirely due to selecting k from the data; 

when the correct value k=\ is imposed, we find that the actual size is correct.

While Hall showed that both GS and SIC are valid asymptotically, his Monte 

Carlo results demonstrated that there may be substantial size distortions in finite 

samples such as we see here. It is clear that lag selection is not a simply a trade-off 

between size and power, with strategies favoring large k offering more correct size 

but lower power. The analogy to including extraneous variables in a regression which 

use up degrees o f freedom but do not create a bias is misleading because the 

particular value of k  is based on pretesting. If k were set a priori and was larger than 

the true value of k in any particular case, then the test would have correct size but 

lower power; see Ng and Perron (1995). An appropriate analogy is to the problem of 

data-based selection o f instruments in 2 stage least squares, where Hall, Rudebusch, 

and Wilcox (1994) have shown that searching for the best instruments severely 

distorts the size of tests on structural coefficients.

The Phillips-Perron test relies on the data to select lag length for truncation of the 

autocovariance function used in estimation of the spectrum at frequency zero, rather
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than for selecting AR order. It is the only one of the tests considered here that has too 

small a size. The size distortion of this test is evidently dependent on the form of the 

autocorrelation function, since Schwert (1989a) found that the size o f this test was too 

large in the MA(1) case.

As noted above, Baneijee, Lumsdaine, and Stock (1992) demonstrate that the 

asymptotic distributions of break dummy coefficients are non-standard, although they 

maximized the F-stat of the dummy variable, rather than the unit root statistic, across 

break dates. Using the t-distribution for inference would create the false impression 

that a break occurred. As seen here, the sizes of the t-tests for the step dummy are 

much too large; about 0.2 in the Perron regressions and about 0.95 in the Zivot- 

Andrews regressions, sample length seeming to have little influence. The size of the 

t-test for the impulse dummy in the Perron regression is also excessive (but not 

shown).

In the case of the Leyboume-McCabe test, the frequency of rejection reflects 

power against the alternative of the ARIMA( 1,1,0) process generating the data. We 

note that power is higher under SIC lag selection. For T=125, the test correctly rejects 

trend stationarity about 80% of the time using SIC and about 60% for GS. For T=62, 

the power is significantly decreased; 44% for SIC and 24% for GS.

1.3.3 The Effect o f Additive Outliers

Successive experiments reported in Table 1.3 add -0.1,-0.2,-0.3, or -0.4 to the 

level of simulated log real GDP in 1930 only, after which it returns to the underlying 

process. This range of outliers was motivated by the range of extreme values reported
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in Table 1.2 for the 1930-1945 period. The resulting process still contains a unit root, 

but it is no longer homogeneous.

As the magnitude of the outlier increases, rejection rates for all of the unit root 

tests rise sharply. Frances and Haldrup (1994) studied the effect of a stochastic 

additive outlier that occurs with some probability each time period in an 1(1) process, 

and showed that even asymptotically the distribution of the Dickey-Fuller t-statistic (k 

fixed) is shifted to the left, increasing the frequency of rejection of the unit root null. 

A stochastic outlier introduces an MA( 1) component into the process, so no finite AR 

representation exists and this is the situation in which Schwert (1989a) had shown 

that unit root tests have poor finite sample properties. Whether the outlier is stochastic 

or fixed, the maintained hypothesis o f a finite order AR with i.i.d. Normal errors is 

violated, and rejection is triggered.

It is completely general that rejection of a null hypothesis does not imply that the 

alternative hypothesis depicted by the test regression is true. Faced with the choice 

between the unit root null and the trend stationary alternative when neither is true, 

these tests reject the unit root. If misinterpreted, these tests spuriously signal trend 

stationarity, with a level break if allowed, when in fact the series has a unit root and 

the outlier event affects only one observation. It is interesting that frequencies of 

rejection of the unit root diminish when the sample size is doubled, seemingly at odds 

with the idea that the power of a test should increase with sample size. However, the 

present case is one where the null hypothesis also becomes less wrong as sample size

& -
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grows, since the departure from homogeneity becomes relatively less severe the 

longer the time series.

For the Leyboume-McCabe test, the issue is how power is altered by introduction 

of the outlier. For the one period outliers considered in this section, the power is 

marginally reduced for T=125, while T=62 results in a more severe power reduction.

1.3.4 Additive Outliers That Persist

The experiments reported in Table 1.4 are designed to explore the impact of 

outlier duration and pattern. Starting from the benchmark case of no outlier, we add - 

.2 in 1930 only (as in Table 3), in each of the ten years 1930-39, and to every year 

from 1930 on. The last case is motivated by Perron’s (1989) finding of a permanent 

break in the level of output in 1930. Further experiments adds a stochastic additive 

outlier sequence generated by an AR(2) modeled on departures from a local trend 

connecting 1929 to 1946 or, alternatively, the fixed, actual de-meaned cumulative 

changes from 1930 through 1945. This last case is in the spirit o f the experiments 

reported by Kilian and Ohanian (1996).

Note that persistence in itself reduces the frequency of rejection o f the unit root in 

the Dickey-Fuller, Phillips-Perron, and Perron tests. When the outlier is permanent, 

the size of the Perron test is close to the correct 0.05. Indeed, the Perron regression is 

correctly specified in that case with inclusion of the impulse dummy at the correct 

date, allowing for a permanent change in level. In contrast, the Zivot-Andrews test 

rejects the unit root null much more frequently if the level of the series shifts 

permanently, and the step dummy is almost always significant. It turns out that this is
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not due to the absence of an impulse dummy in the Zivot-Andrews regression; when 

it was rerun with the impulse dummy the results were essentially the same. Rather, it 

is having to search for the break date (which is identified quite poorly) that accounts 

for excessively frequent rejection of the unit root. This suggests a high value for 

information about the timing of structural change.

In the last two experiments in Table 1.4, the underlying process is inundated with 

a high amplitude wave which distorts the level of the series for 16 years and then is 

gone. In both, the unit root and no-step-dummy null hypotheses are rejected often, 

except by Phillips-Perron. Rejection rates differ sharply depending on which lag 

selection method is used. GS generally chooses a much larger value of k than does 

SIC, reflecting the contrast we saw in Table 1.1. It also appears that the particular 

pattern of real GDP during the period 1930-45 as opposed to the random outcomes of 

the AR(2) process do matter; the tendency to stronger rejection of the unit root in the 

longer sample being more apparent for the fixed pattern.

Finally, the Leyboume-McCabe test has substantially lower power in the last two 

experiments, failing to reject trend stationarity much more frequently if the 

underlying unit root process is overlaid by a transitory component of large amplitude. 

This is not surprising, since the stochastic trend will appear relatively smooth 

compared to the transitory component. As pointed out by Cochrane (1991), there is an 

observational equivalence between a trend stationary process and one with a 

stochastic trend where the variance of the innovations is small enough relative to the 

transitory component.
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1.4 Evidence from the Post-war Data

The argument that a longer span o f data yields a test statistic with greater power is 

valid only if  a time series is temporally homogeneous. Thus while more data is 

usually preferred to less, we find two compelling reasons to focus on post-war GDP 

data for testing the unit root hypothesis. Recall that the Balke-Gordon data used by 

Maddison up to 1929 are constructed by linear interpolation between benchmark 

years, so unit root tests may be biased toward rejection. During the next 16 years the 

economy was subject to the large shocks associated with the Great Depression and 

World War II. The experiments reported above imply that even if these events were 

entirely transitory, they could account for rejection of the unit root hypothesis and be 

misconstrued as evidence o f trend stationarity with or without structural change. Thus 

by focusing on the post-war data, we hope to minimize the chance of spuriously 

rejecting the unit root hypothesis due to violation of the homogeneity assumption.

To study the post-war period we shift from the annual Maddison data to the 

recently available quarterly series of real GDP in chained (1992) dollars. One 

advantage o f the chained data for our purposes is that it addresses the concern of 

Gordon (1993) that a productivity slow-down would be obscured in a series based on 

fixed weight price deflators, such as the real GDP data used by Maddison. Indeed, the 

existence and causes of such a structural break have been discussed since the 1970s 

and are the subject of a large and continuing literature; see also Baily and Gordon 

(1988). Indeed, Perron reported evidence of a break in 1973 in the slope of the trend 

function for post-war quarterly real GNP, indicating a slow down in long-term
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growth, although Zivot and Andrews were not able to confirm this finding when they 

searched for the break date. Results of unit root, trend break, and trend stationarity 

tests for chained post-war quarterly real GDP are presented in Table 1.5. Nominal p- 

values are based on tabulated asymptotic distributions, while exact p-values will 

depend on the method o f lag selection and are obtained by simulation under the null 

hypothesis where the data generating process is either an AR(1) model fitted to first 

differences o f the log o f the post-war data, or an AR(2) around a deterministic time 

trend, the orders chosen both by GS and SIC.

1.4.1 Unit Root Tests and Confidence Intervals for the Largest AR Root

The Dickey-Fuller tests reported in Table 1.5 are fully consistent with a unit root 

in post-war real GDP. Following Perron and Zivot and Andrews, we start with a 

maximum lag of 12 for quarterly data. For both methods of lag selection the nominal 

and exact p-values are greater than 0.50; the expected value of the test statistic being 

about -2.2. For completeness, we include the Phillips-Perron test, although its 

nominal size is too small, and it too is fully consistent with a unit root. A common 

criticism of Dickey-Fuller tests is that they have low power against local alternatives, 

an AR root close to unity. A modified test by Elliot, Rothenberg, and Stock (1996),

which they call DF-GLSX, employs a local-to-unity detrending procedure designed to 

maximize power against local alternatives. Although lag selection differs sharply 

between GS and SIC, the test results do not, both being entirely consistent with a unit 

root.
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Although these results are consistent with a unit root process, they are also 

consistent with a range of trend stationary alternatives since it is not possible to 

distinguish in a finite sample between the realization of a unit root process and a trend 

stationary process with an AR root close enough to unity. This is the observational 

equivalence problem identified by Nelson and Plosser and emphasized by Christiano 

and Eichenbaum (1990) among others. As noted above, Cochrane (1991) has 

identified a corresponding observational equivalence between a trend stationary 

process and one with a stochastic trend where the variance of the innovations is small 

enough, and Engel (1997) shows that an economically significant random walk 

component can be missed. Thus, the range of models that cannot be rejected by any 

finite data set must always include both unit root and trend stationary alternatives. We 

would like to know how wide that range is in any given case.

To see the range of the largest AR root, p, that is consistent the post-war chained 

GDP data, we computed two-sided confidence intervals using the procedure 

developed by Stock (1991). These are based on inverting the augmented Dickey- 

Fuller test statistic to determine the values of p consistent with it. The 95% interval 

based on GS selection of 12 lags is (0.961, 1.026) and based on SIC selection of 1 lag 

it is (0.931, 1.022). We note that both include trend stationary as well as explosive 

alternatives. The former possibility has received considerable attention in the recent 

literature (Rudebusch 1992, 1993). Rudebusch (1993) demonstrates that the 

augmented Dickey-Fuller test applied to post-war quarterly GNP lacks power against 

a specific non-local alternative. He fits an AR(2) to deviations from the linear trend
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and shows that for this parameterization a unit root statistic greater than or equal to 

the observed statistic occurs 22% of the time, suggesting that the distribution of the 

statistic is not radically different under the unit root and this stationary alternative. 

Applying Rudebusch's technique to the chained data, we find that the trend stationary 

representation yields statistics greater than or equal to the observed unit root statistics 

2.47% and 14.55% of the time for GS and SIC respectively. Thus, the disparity 

between the unit root and trend stationary alternative is greater in the chained data. 

1.4.2. Implications o f  Trend Stationarity fo r the Cyclical Behavior o f  GDP

While Jones (1995) and Diebold and Senhadji (1996) argue for the efficacy of 

trend stationarity in forecasting the long run path of output, little attention has been 

given to the particular realization of the transitory component that is implied for the 

post-war U.S. and whether it corresponds to an economically meaningful deviation 

from a long run growth path. Figure 1.4 plots the deviation o f the log of chained GDP 

from the fitted trend line, with NBER reference cycles shaded. While the deviation 

from trend does dip in concert with NBER recessions, its variation is dominated by a 

very low frequency wave that says that the economy was well below trend most of 

the period from 1947 through the early 1960s, consistently above trend until 1981, 

finally falling sharply below trend during the last recession and continuing downward 

through 1997. Conventional measures of economic performance would suggest a very 

different pattern, unemployment having been very high during the 1974-75 and 1981- 

82 recessions and very low in 1997. The implied deviations from trend are also of 

large amplitude, starting at -7% in 1947, peaking at +10% in 1973, and ending at -8%
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in 1997. We are not aware of any estimates that an additional 8% of output was 

available to the U.S. economy in 1997. A forecast based on trend stationarity would 

imply growth rates about one percentage point above average for the next several 

years.

The impression of a long wave in Figure 1.4 is reflected in the long wave 

observed in the correlogram in Figure 1.5 and the low frequency peak in sample 

spectrum plotted in Figure 1.6. These features are reminiscent of the spurious 

periodicity, identified by Nelson and Kang (1981), that characterizes residuals from 

the regression of a random walk, and 1(1) processes in general, on time. They show 

that the spurious cycle typically has a period equal to about 0.83 of the length of the 

series, here about 42 years. Indeed, the peak of the sample spectrum occurs at a 

frequency of 0.035, which implies a period of 45 years, slightly above that predicted 

by Nelson and Kang. These low frequency dynamics, as well as the economic 

implausibility of the implied cycle, suggest to us that the trend component of output is 

much more flexible than a straight line, probably accounting for much of the long 

wave that trend stationarity would attribute to the transitory component we see in 

Figure 1.4.

1.4.3 How Big is the Random Walk in GDP?

Cochrane (1988) criticized the use of unit root tests to determine the long run 

dynamic properties of a time series. Since unit root tests rely on parsimonious 

representations of the short run dynamics, they only use the first few terms of the 

autocorrelation function and may fail to capture the long run behavior of a time
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series. Cochrane advocated a non-parametric measure of long run persistence, the 

ratio of the variance of the j h difference to the variance of the first difference, 

normalized by the factor 1/j. If  a series is trend stationary, the variance ratio 

approaches zero as y—»qo. If a series is integrated, it can be decomposed into a 

random walk plus a stationary component (Beveridge and Nelson (1981)) and the 

variance ratio then approaches the ratio o f the variance of the random walk to the 

variance of the first difference, so it is unity for a pure random walk. Thus, the 

variance ratio provides an estimate o f the contribution of the stochastic trend to the 

long run dynamics of a time series. The sample variance ratio using Cochrane's 

unbiased estimate (his equation A3) for the post-war chained GDP is plotted in Figure 

1.7 and, unlike the shorter series used by Cochrane, shows no tendency to decline at 

longer lags, suggesting that the variation in GDP is dominated by the variation in the 

stochastic trend.

1.4.4 Is There a Productivity Slow-Down in Chained GDP?

We now turn to the issue of a productivity slow-down in the U.S. economy and 

any implications it might have for tests of the unit root hypothesis. It is a fact that 

growth has been slower since 1973: the annual growth rate over the period 1947.1-

1973.1 was 3.9% while in 1973.2-1997.3 it fell to 2.5%. Whether this difference is 

statistically significant and, if so, whether it represents an abrupt structural change or 

a gradual evolution toward slower growth is unclear. Model B of Perron allows for a 

break in the growth rate under the trend stationary alternative, though not under the 

null. It differs from Model A in replacing the step and impulse dummies with a
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“ramp” dummy that is zero through the break date then increasing arithmetically, so 

the trend function is allowed to bend but not shift. Perron applied this test to post-war 

quarterly real GNP, 1947-86, setting the break date at 1973:1, and rejected the null 

hypothesis. Zivot and Andrews estimated the break date at 1972:2 but did not reject 

the unit root. Both used GS, choosing k  = 10 quarters.

For the post-war chained data, both GS and SIC provide no evidence against the 

unit root hypothesis. As seen in Table 1.5, 1972.2 is chosen as the break date as in 

Zivot and Andrews, and the nominal p-values are 0.54 and 0.14 respectively. This 

corroborates the finding of Zivot and Andrews that post-war GDP is not well 

characterized as stationary fluctuations around a kinked time trend. Exact p-values 

reflect the finite sample size distortion induced by lag selection.

1.4.5 The Leyboume-McCabe Test fo r Trend Stationarity

Finally, Table 1.5 also reports the results of the Leyboume-McCabe (1994) test 

for trend stationary applied to the post-war chained data. As noted by Cheung and 

Chinn (1997), the asymptotic p-values provided by Kwiatowski et. al. (1992) are not 

useful guides for inference when the sample is finite. Indeed, the Leyboume-McCabe 

statistics based on GS and SIC lead to rejection of the trend stationary null at any 

significance level. We also computed exact p-values for the observed statistics based 

on the trend stationary AR(2) parameterization discussed above. The likelihood of 

observing the Leyboume-McCabe statistics under GS and SIC is 9.3% and 2.1% 

respectively, offering little evidence in favor of pure trend stationarity for the post

war data.
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1.5 Conclusion

Recent research has demonstrated that standard tests reject the null hypothesis of 

a unit root in U.S. real GDP over the period 1870-1994 in favor o f the alternative of 

stationarity around a log-linear trend. If valid, these findings would imply that all 

shocks are temporary and that the long run path of the economy is deterministic. This 

paper calls that inference into question on two grounds.

First, the size o f these tests is distorted in finite samples by the necessary 

preliminary step of selecting the number of lagged first differences to be included in 

the regression. We show that, for parameterizations suggested by the data, the actual 

probability of rejecting the unit root hypothesis when it is true is substantially greater 

under data-based lag selection than is indicated by the nominal significance levels 

upon which rejections of the unit root have been based in the recent empirical 

literature.

Second, the long historical time series used in the literature violate the maintained 

hypothesis that the data generating process is temporally homogeneous. The period 

1930-45 was one o f unusually large disturbances that may have been largely 

temporary in their effect on the level of output. However, we find that outliers added 

to the level of a unit root process for only one period are sufficient to trigger 

rejections of the unit root hypothesis with high probability. Given the choice between 

two wrong models, the unit root tests lean towards trend stationarity although it is 

false.
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To reduce the possibility of spurious rejection of the unit root null due to 

heterogeneity in the data, we focus on post-war chained GDP. The unit root statistics 

in all cases not only fail to reject, but lie in the upper half of the distribution under the 

null hypothesis. While we also cannot reject a range of trend stationarity alternatives, 

we find that the implied cycle component contains a low frequency peak in the 

sample spectrum with a period of 45 years, much longer than the 6.5 year average 

peak-to-peak length in the NBER chronology. This is reminiscent o f the spurious 

periodicity phenomenon analyzed by Nelson and Kang (1981) for a detrended unit 

root process. Furthermore, the cycle implied by detrending post-war GDP contradicts 

employment based measures of economic activity; it implies below-trend 

performance during the 1960s, above-trend performance in the 1970s, and then a 

decline that puts real GDP 8% below trend in 1997. These results cast serious doubt 

on the trend stationary model as an economically credible representation of real GDP.

In our view, a constructive direction for modeling aggregate output will be one 

that moves beyond the unit root issue and the use of dummy variables to represent 

shifts in level or growth rate. Determinism is not an hypothesis that is supported 

either in economic theory or in history. Dummy variables restrict the frequency of 

permanent shocks, and give no guidance as to the likelihood or size of future shocks. 

A statistical model implies a conditional distribution of future observations given the 

data, not simply an accounting of past events.
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Figure 1.1 Log of Real GDP; Maddison (1995) Data
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Figure 1.2 Growth Rate of U.S. Real GDP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

0.3

0.2 J

-0 .2  J

-0.3
1880 1900 1920 1940 1960 1980

Figure 1.3 Irregular Component, U.S. Real GDP
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Figure 1.4 Detrended Post-war Chained Real GDP
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Figure 1.6 Spectrum of Detrended Post-war Chained Real GDP
(Lag Window=150)
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Figure 1.7 Variance Ratios for Log of Post-war Chained Real GDP 
Based on Cochrane’s (1988) Biased Corrected Estimate
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Table 1.1 Tests for a Unit Root or Trend Stationarity in U.S. Real GDP 
Annual Data; Maddison (1995)

AR Test Nominal Step Dummy
Test: GS/SIC_______  Lag (4) Statistic p-value (5) t-statistic
1870-1994:
Unit root: 
Dickey-Fuller 6 -3.74 0.03

1 -4.14 <.01 -

Phillips-Perron - -3.52 0.04 -

Perron (1) 8 -5.58 <.01 -3.74
(break in level) 1 -4.72 <.01 -2.31

Zivot & Andrews (2) 8 -6.10 <.01 -4.33
1 -5.10 0.02 -2.82

Trend stationary: 
Leyboume 5 0.42 <.01
& McCabe (3) 2 0.05 0.40 -

1909-1970: 
Unit root: 
Dickey-Fuller 1 & 1 -3.43 0.06

Phillips-Perron - -2.63 0.27 -

Perron (1) 8 -4.89 <0.01 -3.87
(break in level) 1 -4.26 0.02 -2.40

Zivot & Andrews (2) 8 -5.61 <0.01 -4.63
1 -4.72 0.07 -3.03

Trend stationary: 
Leyboume 4 0.47 <0.01
& McCabe (3) 2 0.10 > .85 -

(1) Break in level assumed at 1929 as in Perron (1989).
(2) Break date maximizes unit root t-statistic; choose 1929 under GS & SIC.
(3) Null hypothesis is trend stationarity.
(4) GS starts with 8 lags, reducing lags until t^ l .645 in absolute value,
SIC maximizes criterion of Schwarz (1978) over lags 0 to 8.

(5) Nominal p-values obtained by simulation under the null hypothesis.
(6) Exact p-values obtained by simulation with lag selection, under unit root null for unit root tests, under trend 

stationarity for L-M, DGP is the AR process selected by SIC for the actual data under the null.
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Table 1.2. Summary Statistics for U.S. Real GDP

Growth Rates
Mean Std Dev Range AR Coefficient Estimates S E J-Bp

1870-1994 0.033 0.056 .18/-.23 0.27 * 0.00 -0.12 0.06 0.00

1870-1929 0.037 0.048 .13/-.08 -0.28 * -0.20 -0.04 0.05 0.91

1930-1946 0.026 0.118 .18/-.23 0.90 * -0.16 -0.49 0.08 0.93

1947-1994 0.031 0.026 .09/-.02 0.20 -0.11 -0.19 0.03 0.71

Detrended
Mean Std Dev Range AR Coefficient Estimates S E J-Bp

1870-1994 0.000 0.11 .31/-.37 1.13 * -0.24 -0.10 0.05 0.00

1870-1929 0.029 0.082 .18/-. 14 0.64 * 0.05 0.13 0.05 0.66

1930-1945 -0.100 0.222 .31/-.37 1.48 * -0.57 -0.23 0.07 0.60

1946-1994 -0.003 0.048

oi*00o

1.09 * -0.24 -0.05 0.02 0.35

Notes: * denotes asymptotic t-statistic significant at .05 level. 
J-B p denotes significance level of Jarque-Bera test for Normality.
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Table 1.3. Monte Carlo Study of Unit Root Tests; DGP is an AR1MA(1,1,0) with Additive Outlier at 1930. 
Rejection Frequencies are at the Nominal 0.05 Significance Level.

Lag k Selection Performed Alternately by GS and SIC.

Series Length: T=125

Dickey-Fuller Phillips- Perron; 1929 Break Date Zivot-Andrews; Search for Date Leyboume & McCabe

1930 GS SIC Perron GS SIC GS SIC GS SIC

Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary

0 0.084 0.052 0.036 0.092 0.189 0.063 0.171 0.108 0.965 0.073 0.961 0.569 0.806
-0.1 0.076 0.045 0.054 0.147 0.256 0.115 0.239 0.115 0.959 0.066 0.961 0.549 0.794
-0.2 0.125 0.135 0.139 0.301 0.321 0.316 0.312 0.180 0.961 0.187 0.965 0.498 0.762
-0.3 0.142 0.215 0.270 0.374 0.393 0.414 0.379 0.261 0.959 0.378 0.964 0.475 0.737
-0.4 0.198 0.222 0.491 0.453 0.458 0.513 0.445 0.277 0.959 0.450 0.969 0.491 0.706

u>

Series Length; T=62

Dickey-Fuller Phillips- Perron; 1929 Break Date Zivot-Andrews; Search for Date Leyboume & McCabe

1930 GS SIC Perron GS SIC GS SIC GS SIC

Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary

0 0.097 0.058 0.031 0.100 0.246 0.081 0.212 0.155 0.930 0.128 0.947 0.238 0.439
-0.1 0.083 0.061 0.079 0.260 0.309 0.216 0.276 0.171 0.940 0.102 0.918 0.223 0.412
-0.2 0.228 0.286 0.299 0.448 0.425 0.508 0.402 0.364 0.923 0.366 0.931 0.182 0.346
-0.3 0.377 0.542 0.616 0.529 0.471 0.620 0.470 0.692 0.919 0.725 0.932 0.133 0.241
-0.4 0.488 0.711 0.837 0.634 0.506 0.731 0.518 0.864 0.928 0.912 0.943 0.073 0.162
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Table 1.4. Monte Carlo Study of Unit Root Tests; DGP is an ARIMA(1,1,0) with an Additive Outlier Process Beginning at
1930. Rejection Frequencies are at the Nominal 0.05 Significance Level.

Lag k Selection Performed Alternately by GS and SIC.

Series Length: T=125
Dickey-Fuller Phillips Perron; 1929 Break Date Zivot-Andrews; Search for Date Leyboume-McCabe

GS SIC Perron GS SIC GS SIC GS SIC
Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary
None 0.084 0.052 0.036 0.092 0.189 0.063 0.171 0.108 0.965 0.073 0.961 0.569 0.806

(-.2) @ 1930 0.125 0.135 0.139 0.301 0.321 0.316 0.312 0.180 0.961 0.187 0.965 0.549 0.762
(-.2) '30-'39 0.112 0.042 0.042 0.169 0.160 0.056 0.134 0.233 0.974 0.128 0.966 0.470 0.705

(-.2) 1930 on 0.050 0.033 0.033 0.056 0.272 0.040 0.256 0.227 0.975 0.187 0.974 0.577 0.813
AR(2) '30-'45 0.416 0.764 0.599 0.498 0.275 0.772 0.276 0.628 0.955 0.817 0.970 0.298 0.286
Fixed pattern 0.499 0.673 0.083 0.506 0.256 0.642 0.143 0.643 0.979 0.651 0.988 0.170 0.278 w

oo

Series Length; T=62

Dickey-Fuller Phillips Perron; 1929 Break Date Zivot-Andrews; Search for Date Leyboume-McCabe

GS SIC Perron GS SIC GS SIC GS SIC

Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary
None 0.097 0.058 0.031 0.100 0.246 0.081 0.212 0.155 0.930 0.128 0.947 0.238 0.439

(-.2) @ 1930 0.228 0.286 0.299 0.448 0.425 0.508 0.402 0.364 0.923 0.366 0.931 0.182 0.346
(-.2) '30-'39 0.048 0.007 0.016 0.157 0.278 0.018 0.212 0.503 0.978 0.235 0.989 0.172 0.374

(-.2) 1930 on 0.060 0.018 0.033 0.084 0.412 0.053 0.347 0.483 0.953 0.411 0.963 0.319 0.501
AR(2) '30-'45 0.641 0.740 0.163 0.730 0.317 0.823 0.278 0.798 0.898 0.789 0.920 0.042 0.045
Fixed pattern 0.185 0.233 0.000 0.553 0.518 0.332 0.216 0.855 0.999 0.597 0.996 0.005 0.068
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Table 1.5. Tests for a Unit Root or Trend Stationarity in Post-war Output. 
Quarterly Chained Real GDP; 1947.1 -  1997.3

Test Nominal Exact
Test: GS/SIC AR Lag (4) Statistic p-value (5) p-value (6)
Unit root
Dickey-Fuller 12 -1.52 0.82 0.816

I -2.05 0.58 0.552

Phillips-Perron n/a -1.81 0.69 0.560

Elliott, Rothenberg, 12 -0.84 0.90 0.621
& Stock 1 -1.50 0.59 0.660

Perron (1) 12 -3.3 0.19 0.269

(break in slope) I -3.96 0.05 0.056

Zivot-Andrews (2) 12 -3.31 0.54 0.628

1 -3.99 0.14 0.173

Trend stationarity
Leyboume 3 2.25 0.00 0.103
& McCabe (3) 1 3.17 0.00 0.021

Notes:
(1) Break in slope assumed to occur at 1973:1 as in Perron (1989).
(2) Break date maximizes unit root t-statistic; choose 1972:2 under GS & SIC.
(3) Null hypothesis is trend stationarity.
(4) GS starts with 12 lags, reducing lag until t> 1.645 in absolute value,
SIC maximizes criterion o f Schwarz (1978) over lags 0 to 12.
(5) Nominal p-values obtained by simulation under the null hypothesis, as in the original 
articles in which these tests are described.
(6) Exact p-values obtained by simulation with lag selection, under unit root null for unit root 
tests, under trend stationarity for L-M, DGP is the AR process selected by SIC for the actual 
data under the null.
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CHAPTER 2: THE NATURE OF BUSINESS CYCLE ASYMMETRY: 

EVIDENCE FROM A DYNAMIC FACTOR MODEL WITH REGIME 

SWITCHING PERMANENT AND TRANSITORY COMPONENTS

2.1 Introduction

Do economic time series permanently decrease during recessions? Recent 

research (Wynne and Balke (1992), Beaudry and Koop (1993), and Sichel(1994)) 

provides evidence which suggests that the answer is no. This implies that following a 

recession, output will experience above average growth. Stated another way, the 

“recovery” phase is indeed a recovery. In contrast, if output were to permanently 

decrease during a recession, there would be no recovery. Output would begin to grow 

from its new, lower level. In this paper, we add to the existing literature through an 

analysis of monthly time series which incorporates the ideas of comovement across 

macroeconomic time series and business cycle asymmetry.

The importance of the comovement of economic time series and business cycle 

asymmetry was recognized by early scholars of the business cycle. In their landmark 

study, Bums and Mitchell (1946) highlighted comovement as one o f the two 

empirical regularities of the business cycle:

...a  cycle consists o f expansions occurring at about the same time in many economic 
activities, followed by similarly general recessions, contractions, and revivals which 
merge into the expansion phase o f the next cycle.

The other regularity of the business cycle, asymmetry, is the idea that expansions are 

fundamentally different than recessions. This goes back at least as far as Mitchell
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(1927):

the most violent declines exceed the most considerable advances. The abrupt 
declines usually occur in crises; the greatest gains occur in periods of 
revival,...Business contraction seems to be a briefer and more violent process than 
business expansion.

An often cited quote from Keynes (1936) also conveys the same message:

...the substitution o f a downward for an upward tendency often takes place suddenly 
and violently, whereas there is, as a rule, no such sharp turning point when an 
upward is substituted for a downward tendency.

Recently, researchers have used the tools of modem time series analysis to 

explicitly model comovement and asymmetry. Stock and Watson (1989, 1991, 1993) 

estimate a linear dynamic factor model which captures the comovement across 

economic time series through an unobserved permanent component common to each 

series. The Kalman filter is used to extract the common factor which is then 

interpreted as a composite index of economic activity. The implied index corresponds 

closely to the composite index o f coincident indicators developed by the Department 

of Commerce and indeed gives it statistical justification. Hamilton (1989) 

incorporates business cycle asymmetry in a univariate nonlinear model which allows 

the growth rate of output to be dependent on the “state” of the economy. The results 

from his regime switching model suggest that the economy is characterized by two 

states: positive growth (expansion) and negative growth (recession). Furthermore, 

since the asymmetry exists in the permanent component, recessions have permanent 

effects on the level of output.

Traditionally, comovement and asymmetry have been analyzed in isolation. In a 

recent paper, Diebold and Rudebusch (1996) provide empirical and theoretical
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support for comovement and asymmetry as important features o f the business cycle 

and suggest that they should be analyzed simultaneously. M.-J. Kim and Yoo (1995), 

Chauvet (1997), and Kim and Nelson (1998a) unite the dynamic factor model and 

regime switching by allowing the common permanent component of Stock and 

Watson to undergo the type of regime switching advocated by Hamilton. M.-J. Kim 

and Yoo and Chauvet estimate the model via Kim’s (1994) approximate maximum 

likelihood method, whereas Kim and Nelson employ the Gibbs sampler. They 

estimate new coincident indexes of economic activity which explicitly incorporate 

comovement and business cycle asymmetry.

In these attempts to model comovement and/or asymmetry, recessions are 

assumed to have permanent effects. For example, if the growth rate o f a time series is 

subject to changes in regime, then a period of negative growth (recession) will 

permanently lower the level of a time series. However, recent research raises the 

possibility that recessions only temporarily lower output. The idea that the rate of 

output growth during an expansion is related to the magnitude o f the preceding 

contraction is explicit in Friedman’s (1964, 1993) “plucking” model of the business 

cycle:

There appears to be no systematic connection between the size o f an expansion and 
o f the succeeding contraction... a large contraction in output tends to be followed on 
the average by a large business expansion; a mild contraction, by a mild expansion.

Kim and Nelson (1998b) specify a univariate nonlinear econometric model which 

captures Friedman’s idea that recessions only temporarily affect output by allowing
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the transitory component of post-war real GDP to be asymmetric. The model 

performs remarkably well at identifying the NBER recessionary periods, and suggests 

that recessions are well characterized as temporary departures o f output from its 

natural level.

It appears that neither asymmetry in the transitory component nor asymmetry in 

the permanent component may be ignored in modeling the business cycle. However, 

there has been no attempt to model both types of asymmetry simultaneously. To 

make up for the gap in the literature, we examine the nature o f business cycle 

asymmetry within a dynamic factor model. While existing time series models of 

business cycle comovement allow a common permanent factor only, our model also 

allows for a common transitory factor. In addition, we examine the nature of business 

cycle asymmetry in terms of these two common factors. The models presented in this 

paper may be considered as extensions of M.-J. Kim and Yoo (1995), Chauvet 

(1997), and Kim and Nelson (1998a) in that they allow for a Markov switching 

common transitory component as well as a Markov switching common permanent 

component. The Markov switching common transitory component in our models 

potentially captures the “plucking” nature of recessions advocated by Friedman 

(1964, 1993) as in Kim and Nelson (1998b).

With the exception of the 1990-91 recession, which appears not to contain a 

significant transitory component, we find that postwar recessions are comprised of 

both permanent and temporary shocks. Thus, although a fraction o f negative shocks 

to economic time series is temporary, their level is permanently lowered during a
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recession.

This paper is organized as follows. Section 2.2 provides a review of comovement 

and asymmetry in the business cycle literature. Section 2.3 presents a dynamic factor 

model with permanent and transitory regime switching. Section 2.4 generalizes the 

model by allowing the switching in the common permanent and transitory 

components to be independent. Section 2.5 summarizes and offers concluding 

remarks.

2.2 Comovement and Asymmetry in the Business Cycle Literature

The essence of the linear dynamic factor model proposed by Stock and Watson 

(1989, 1991, 1993) is that the comovement across economic time series can be 

captured by a single unobserved factor common to all the series. They analyze the 

four monthly coincident indicator series used to construct the Department of 

Commerce composite index o f coincident indicators: the index of industrial

production, personal income less transfer payments, manufacturing and trade sales, 

and employees on nonagricultural payrolls. If each series has a unit autoregressive 

root, it can be decomposed into a deterministic component (DT(), and a permanent

component (Pu) :

where Yit is the log of the i h indicator series,C, is the unobserved common

(2 .2 . 1)

DTj = a, + D ,r , (2 .2 .2 )

(2.2.3)
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permanent factor, and £it is an idiosyncratic permanent component. If

Yit,i = 1,2 n are not cointegrated, the model may be written in first differences in

the following manner:

AYit = D i + riA C ,+ zit, (2.2.4)

where z„ = A ^it is a stationary process and is approximated by:

¥ t (L)zu = eit, eit ~ iJ.d.N(0,a ] ) , (2.2.5)

where the roots of y/i(L) = 0 lie outside the complex unit circle. The common 

permanent component, C ,, is assumed to follow an AR process in first differences:

j{L)AC, = 3  + v,, v, -  u.d.N(0,1), (2.2.6)

where the roots of <fi(L) = 0 lie outside the complex unit circle and the innovation 

variance has been normalized to unity. The state space representation of this model is 

linear, and calculation of the exact Gaussian likelihood function via the Kalman filter 

is possible. Stock and Watson use the Kalman filter to extract an estimate of 

C, which is then interpreted as a composite index of economic activity.

Hamilton (1989) analyzes business cycle asymmetry by allowing the growth rate 

of GNP to follow a nonlinear stationary process. If y t = In(GNPt ) , Hamilton’s 

model may be written as:

(1 -<f>xL  faL4)(Ayt - v Sl) = el , e, -  U. d.N(0, a 2e ) , (2.2.7)

where
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Ms, = Mo + M\St , St = {0,1}. (2.2.8)

S, follows a 1st order Markov switching process with transition probabilities:

Pr[S, = 0 | Sr_, = 0\ = q, Pr[S, = 11 S,_, = l] = p. (2.2.9)

Hamilton develops a nonlinear filter which facilitates calculation of the exact 

likelihood function for AR processes with a Markov switching mean. His results 

suggest that post-war quarterly GNP switches between one of two states: positive 

growth (expansion) and negative growth (recession).

Evidence of various types of business cycle asymmetry is abundant. Analyzing 

periods of increase and decline in the unemployment rate, Neft<?i (1984), DeLong and 

Summers (1986), and Sichel (1989) provide evidence that recessions tend to be 

steeper and more short lived than recoveries. However, DeLong and Summers (1986) 

and Falk (1986) are unable to support this finding using GNP data. In addition, 

Sichel (1993) provides evidence that business cycle troughs are deeper than peaks are 

tall.

Business cycle asymmetry is also evident in the duration of expansions and 

recessions. Using constant transition probabilities, which imply duration 

independence, Hamilton (1989) and Lam (1990) find that the expected duration of an 

expansion is longer than that of a recession. Allowing the duration to depend on its 

current length, Diebold and Rudebusch (1990), Sichel (1991), Diebold, Rudebusch 

and Sichel (1993), Durland and McCurdy (1994), and Kim and Nelson (1998a) find 

that postwar contractions exhibit positive duration dependence, whereas postwar
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expansions do not.

The nature of business cycle asymmetry has important implications regarding the 

long run effect of recessions. If  the permanent component is subject to changes in 

regime, as in Hamilton (1989), then a recession will permanently lower the level of 

output. Conversely, if regime switching exists only in the transitory component, then 

recessions will only temporarily lower the level of output.

The existing literature contains evidence of both permanent and transitory 

asymmetry. As mentioned earlier, Hamilton (1989), and Lam (1990) who provides a 

generalization of Hamilton’s model, find that a model which allows the growth rate of 

GNP to be state dependent is able to identify turning points in economic activity 

which closely match the NBER recessionary periods. The regime switching dynamic 

factor models of M.-J. Kim and Yoo, Chauvet, and Kim and Nelson, which specify a 

state dependent growth rate, are also extremely successful at identifying the phases of 

the business cycle. This suggests that permanent variation is important in explaining 

recessions.

There is also evidence that the business cycle is asymmetric due to nonlinearity in 

the transitory component. Beaudry and Koop (1993) emphasize the significance of 

asymmetry in regard to the relative importance of permanent and transitory shocks. 

They argue that failure to allow for asymmetry results in understating the importance 

of positive shocks, and overstating the importance of negative shocks. In particular, 

they estimate impulse response functions which take into account the current depth of 

the recession, and conclude that the effect of a negative shock of plausible size is
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negligible after 12 quarters. Wynne and Balke (1992) and Sichel (1994) provide 

evidence that the economy grows faster immediately following a recession. A direct 

implication of this “peak-reverting” behavior is that declines in economic activity 

contain an important transitory component. This type of behavior is consistent with 

Friedman’s (1969, 1993) “plucking” model and DeLong and Summer’s (1988) 

“output-gaps” view of the business cycle.

Kim and Nelson (1998b) specify and estimate a univariate version of Friedman’s 

model for output in which the source of asymmetry is regime switching in the

transitory component. They employ the following unobserved components

specification:

y ,= rjt +xt , (2.2.10)

where y t is the log of real GDP, rjt is the symmetric stochastic trend, and jc, is the

transitory component. They specify asymmetry in the transitory component in the 

following manner:

x , = <f>i*.-i + <Pix ,-i + Ts, + u, . (2 .2 .11)

rs = rS, , (2.2.12)

u, -u .d .IV (0 ,a- ). (2.2.13)

The cyclical component is asymmetric if r  * 0, and r  < 0 corresponds to the level of 

output being “plucked” down during recessionary times. As in Hamilton (1989) and 

Lam (1990), their model is successful at identifying the NBER recessionary periods, 

and the results suggest that recessions are well characterized as temporary departures
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of output from its natural level.

Implicit in the business cycle analysis of Bums and Mitchell is the idea that 

economic time series tend to move together over the business cycle. Indeed, a 

recession was said to have occurred if numerous series experienced a decline. To 

properly model comovement, we must first understand the nature o f recessions; that 

is, do they permanently lower the level of output? As mentioned above, recent work 

by Wynne and Balke, Beaudry and Koop, and Sichel suggests that the answer, at least 

in part, is no. If economic time series display comovement over the business cycle 

and recessions only temporarily lower the level of output, this suggests the existence 

of a common transitory component. Thus we extend the dynamic factor model 

framework to include a common transitory factor.

2.3 A Dynamic Factor Model with Regime Switching Permanent and Transitory
Common Factors: A Basic Model

To facilitate comparison with earlier work, we re-estimate the linear dynamic 

factor model of Stock and Watson (1989, 1991, 1993). The data used are the index of 

industrial production (IP), personal income less transfer payments (GMYXPQ) in 

billions of 1987 dollars, and manufacturing and trade sales (MTQ) in billions of 1987 

dollars. DRI codes are in parentheses. The data are seasonally adjusted and the 

sample period is 1959.01 through 1997.01. These series comprise three of the four 

monthly indicator series classified by the Department of Commerce as coincident. 

We exclude the fourth series, employees on nonagricultural payrolls (LPNAG), since
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it appears to lag the business cycle (see Stock and Watson (1989, 1991, 1993) and 

Kim and Nelson (1998a)).

We performed the Dickey-Fuller (1979) unit root test and were unable to reject 

the null hypothesis of a unit root versus the alternative of trend stationarity at the 10% 

level for each of the three series. Also, we tested the null hypothesis that the series 

are not cointegrated versus the alternative that they are cointegrated using the 

pairwise residual based test of Engle and Granger (1987) and were unable to reject 

the null at the 10% level. Since the data appear to be individually integrated, but not 

cointegrated, the model is written as:

a y„ ^D '+ r tA C .+ z ,,, (2.3.1)

AC, = S  + 0JAC,_i +$tAC,_2 + v,, v, ~U A.N (0,1), (2.3.2)

“iv = ¥ ,\zu-\ + + eu . e„ ~ id d .N (0 ,a f), (2.3.3)

E(yseit) = 0, V i,s ,t, (2.3.4)

where Yit is the log of the ( h indicator. As in Stock and Watson (1989, 1991, 1993), 

we assume that the dynamics of the common and idiosyncratic components can be 

adequately described by a second order autoregression. The innovation variance for 

the common permanent factor has been normalized to unity. Stock and Watson 

(1991) note that with this model specification, the intercept terms, 8  and

D = [£), D2 £>3 ] ', are unidentified. Identification is achieved if the data are 

expressed in deviations from their means (Ayit = AYit -A Y () . We can replace
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equations (2.3.1) and (2.3.2) with:

Ayit = y tAc, + z,, , (2.3.5)

Ac, = <f>xAc,_x + <f>2Ac,_2 + v, , (2.3.6)

where Ac, = AC, -  S. Writing the model in deviations from means concentrates S  

and D = [Dx D2 D3}' out of the likelihood function. Appendix B describes a

procedure to retrieve S  and D = [Dx D2 D} ] '.

Since the state space model is linear, the Kalman filter can be used to calculate the 

exact Gaussian likelihood function. Column 2 of Table 2.1 reports the maximum 

likelihood estimates of this model (Model l) .1 Note that the factor loadings ( / ,)  are

individually significant at the 5% level.

We also consider a linear dynamic two factor model. In this framework, we 

decompose each series into a deterministic component, a permanent component, and 

a transitory component as follows:

(2.3.7)

pu =r,c, +£» , (2.3.8)

Tit AjX, + (oit, (2.3.9)

Throughout this paper the data are standardized so that they are distributed with zero mean and unit 
variance in log first differences.
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where C, is the common permanent factor, xt is the common transitory factor, and 

and cou are independent idiosyncratic permanent and transitory components 

respectively. We can write the model in deviations from means as follows:

The innovations variances for both common components have been normalized to 

unity. In addition, the innovations variances of the three components are assumed to 

be mutually uncorrelated at all leads and lags.

Column 3 of Table 2.1 reports the parameter estimates for this model (Model 2). 

The permanent factor loadings are individually significant at the 5% level. The 

transitory factor loadings (A,-) for IP and MTQ are also individually significant at the

5% level. However, the common transitory factor does not appear to be a significant 

explanatory variable for the personal income series (GMYXPQ). Ideally, we would 

test the joint null hypothesis that A{ = A2 =A3 =0, in which case the model would

reduce to a dynamic one factor model. However, under the null hypothesis <f>* and

Ayit = y ,A C ' + A, Ax, + zit , (2.3.10)

Ac, = (f>xAc,_x + <f>2Ac,_2 + v,, v, ~ ij.d .N (0,1), (2.3.11)

■*/ =  f \ x t-\ +<f>2x t-2 0 ,1), (2.3.12)

where zit = A ^u + Acoit is stationary and approximated by:

and

E (vruseit) = 0, V i,r,s,t. (2.3.14)
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<f>2 are unidentified. This violates one of the standard assumptions of asymptotic 

theory which guarantees that the Wald, LR, and LM tests converge to a chi-squared 

random variable. Hansen (1996) provides a method for calculating critical values for 

the Wald, LR, and LM tests when parameters are unidentified under the null 

hypothesis. However, given the numerous potential nuisance parameters in the linear 

two factor model, his procedures are not feasible in this case.2

We now extend the dynamic two factor model by incorporating asymmetry in 

both the permanent and transitory common factors. As in the linear two factor model, 

each indicator variable is decomposed into a deterministic component, a permanent

component, and a transitory component. With regime switching in both the

permanent and transitory common factor components, equations (2.3.10) -  (2.3.14) 

are re-written as follows:

Ayit = /,d c , + A.(Ax, + z„ , (2.3.10)’

Ac, = Ps + <j>xAc,_x + </>2Ac, _ 2  + v, , v, -  U.d.N(0,1), (2.3.11)’

xt = Ts, + f \ x i-\ +<f>2x i-i ut ~ (0,1), (2.3.12)’

2 To circumvent the problem o f unidentified parameters under the null, we can specify the null 

hypothesis as X\ = k 2 = ^ 3  = <p\ = $ 2  -  0 • Under this hypothesis, there is no identification problem 
and the Wald, LR, and LM tests are asymptotically distributed as chi-squared random variables with 5 
degrees of freedom. The LR statistic for this hypothesis is 23.0528 which rejects the null at the 1% 
significance level. This suggests that the common transitory component explains a statistically 
significant amount of the variation observed in the data. It should be noted that although this test has 
correct size asymptotically, it is not consistent against hypotheses o f  the form:
X\ =  X2 =  /I3 = 0, ]̂* =a.\ ,  <f> 2 = a 2 for a t and a 2 not both zero. In fact, against hypotheses of this 
type, the power is equal to the size for arbitrarily large samples.
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*«* = ¥ a zu -1 + VnZu-i + e,t . 6* -  «.</.W(0,erf), (2.3.13)’

E(vruseit) = 0 , V i ,r ,s , t . (2.3.14)’

As in M.-J. Kim and Yoo (1995), Chauvet (1997), and Kim and Nelson (1998a), we 

specify asymmetry in the common permanent component by allowing the growth rate 

of C, to be regime dependent:3 While S  is constant, J3S depends on whether the

economy is in an expansion (S, = 0) or recession (S, = 1):

/3S = /?0 + ftS t - S' = {0,1}. (2.3.15)

where St follows a 1st order Markov switching process with transition probabilities:

Pr[st = 0 1 5,., = 0]= q, Prfc = 11 S,_, = l]= p. (2.3.16)

Thus, S  /(l -  ̂ (1)) is the long run growth rate of the common permanent component 

and/?s determines the deviation from this growth rate, depending on whether the

economy is in an expansion or recession.

As in Kim and Nelson (1998b) we incorporate asymmetry in the transitory 

component by specifying:

r5 =zSf. (2.3.17)

The same unobserved state variable governs the switching of both common 

components. If r < 0 , the transitory component is “plucked” down during

3 Instead o f specifying a state dependent intercept, Kim and Nelson allow for a state dependent mean, 
^(Z.)(AC, - S  -  f i s ) =  v , . We allow the intercept to be state dependent purely for convenience.
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recessionary times. The speed at which the plucks decay is determined by the 

parameters of <f>' (L).

If the state o f the economy were observed, the state space model would be linear 

and Gaussian, and calculation of the exact likelihood function through use of the 

Kalman filter would be possible. The unobservability of the state, however, induces 

nonlinearity in the transition equation of the state space representation, and 

calculation of the exact likelihood function via the Kalman filter is computationally 

intractable. As noted by Harrison and Stevens (1976) and Gordon and Smith (1988), 

if there are M  possible states, each iteration of the filter produces an M-fold increase 

in the number of states to consider. This imposes a considerable computational 

burden, and approximations are unavoidable. Kim (1994) proposes a method to 

approximate the likelihood function for state space models with Markov switching in 

both the measurement and transition equations. The algorithm is computationally 

efficient, and experience suggests that the degree of approximation is small; see Kim

(1994). Presentation of the state space representation for the regime switching two 

factor model, and details concerning estimation are relegated to Appendix B.

The parameter estimates for this model are reported in Column 5 of Table 2.1 

(Model 4). The null hypotheses that At- = 0 for / = 1,2, and 3 are rejected at the 5%

significance level. The transitory factor loading for personal income becomes 

significant when we allow for asymmetric common factors. In addition, the 

permanent factor loadings are all individually significant. As in the linear two factor
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model, we would like to test the joint null hypothesis that Xx = X2 = X3 = 0, in which

case our model would reduce to a dynamic one factor model with switching in the 

common permanent component. Estimates of this restricted model are reported in 

Column 4 of Table 1.1 (Model 3). Under the null hypothesis, 0*, (f>2, rare  

unidentified. Although the likelihood function is increased when we allow for the 

common transitory factor, we cannot formally test the one factor vs. the two factor 

model.4

The expected durations of expansions and recessions are 51 and 6 months 

respectively.5 It should be noted that the sum of the AR coefficients for x( , <f>l + <(>\, 

is 0.6888. The common transitory component is less persistent that than o f Model 2 

(0* + 02 = 0.8149). This corroborates the finding of Beaudry and Koop (1993) and 

Kim and Nelson (1998b) who demonstrate that failure to take asymmetry into account 

results in overstating the persistence o f transitory shocks.

Figure 2.1 plots the filtered probability that a recession has occurred, whereas 

Figure 2.2 plots the smoothed probability, based on Kim’s (1994) smoother.6 The

4 •  •
We can test the hypothesis that X\ = X2 = X3 = <j>\ = <f>2 -  r  = 0 . The LR statistic for this hypothesis

is distributed asymptotically as a chi-squared random variable with six degrees o f freedom The LR 
statistic is 63.65, which exceeds the 1% critical value. The same caveat that applies to the hypothesis 
o f a one factor linear model vs. a two factor linear model applies in this case as well. Asymptotically 
the test has power equal to size against hypotheses o f the form:

Xx = X2 = A3 = 0 , <£ -  a x ,(p2 =  a 2 , r  =  a 3 f°r a \ ’ a 2 ’ a 3 not aM zero-
5 With constant transition probabilities, the duration o f expansions and recessions are calculated as (1- 

p)~l and ( 1-<7)_I respectively.

6 The filtered probability is an inference on S, based on information up to time t: Pr[S, = 11 y/, ],
whereas the smoothed probability uses the entire sample o f information: Pr[S, = \ \< j /T ]
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shaded areas correspond to the NBER recessionary periods. The model performs 

reasonably well in accounting for the NBER recessionary periods. The most notable 

difference between our results and those from the regime switching dynamic factor 

models of M.-J. Kim and Yoo (1995), Chauvet (1997), and Kim and Nelson (1998a), 

is that in our model neither the filtered nor the smoothed probabilities identify the 

1990-91 recession.

The common transitory component, xf(/, is plotted in Figure 2.3. Its behavior is

similar to the asymmetric cyclical component of Kim and Nelson (1998b) in that it is 

plucked down during recessionary periods and the negative disturbances dissipate 

quickly. This result that output tends to grow quickly following a decline in 

economic activity suggests that recessions are in some part transitory. Our results 

thus confirm those of Wynne and Balke (1992), Beaudry and Koop (1993), and 

Sichel (1994) who conclude that declines in economic activity contain an important 

transitory component. However, there is no pluck associated with the 1990-91 

recession.

Figure 2.4 plots the estimate of the common permanent component (Cllt) .7 Cltl is

qualitatively similar to the estimated common permanent components of M.-J. Kim 

and Yoo, Chauvet, and Kim and Nelson. Our results affirm their findings; namely 

that declines in economic activity contain an important permanent component. This

7 C,„ denotes inference on C, based on information available a time t. The procedure to extract
based on the steady state Kalman gain is described in Appendix B. Both common factors are 
unitless and identified up to an arbitrary initial value.
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directly implies that the level o f output is permanently lowered during a recession. 

The parameters estimates can be used to ascertain the effect o f a contraction on the 

level of the three indicator series. The percentage decrease of the three series in 

response to a six and twelve month contraction are reported in Table 2.2. The level of 

industrial production (IP) is permanently lowered by 2.86% and 6.67% if S, = 1 for

six and twelve consecutive months respectively. The answer to the question, “Do 

recessions permanently lower output,” appears to be yes.

In spite of the model’s failure to detect the most recent recession, Cllt drops during 

1990-91. The timing of the decline is in perfect accord with the NBER’s dating of 

the recession. In five of the six recessions in our sample, both C()/ and x,,( contract

significantly. The fact that their behavior diverges during the 1990-91 recession 

lends credence to the popular idea that the most recent recession is qualitatively 

distinct from its predecessors. To identify a recession, our model requires a decrease 

in both common factors. A characteristic of the 1990-91 recession is that it was not 

followed by a period of rapid growth. For a discussion of this phenomenon, the 

reader is referred to Sichel (1994). Thus, even though our estimate of C, suggests

that there was indeed a period of permanent negative shocks during 1990-91, given 

the lack of transitory variation our model is unable to identify the most recent 

recession.
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Our results thus indicate that declines in economic activity contain permanent and 

transitory components, with the exception of the most recent recession which appears 

to be entirely permanent.

2.4 A Dynamic Factor Model with Regime Switching Permanent and Transitory 
Common Factors: A Generalization

The failure of Model 4 to account for the 1990-91 recession suggests that the 

common permanent and transitory components do not always switch together. We 

thus allow them to switch independently at all points in time. In particular, we 

augment Model 4 to allow C, and x, to be driven by two independent state variables.8 

We extend equations (2.3.15)—C2.3.17) in the following manner:

Where S u and S2, are independent 1st order Markov switching processes with 

transition probabilities given by:

Psu — fio + P\S\t (2.4.1)

(2.4.2)

— 0 I $\j-i — 0] — > Pr[*̂ i/ — 11 S\j-i — 1] — Pi (2-4.3)

and

~ 0 I $2j-l ~ 0] ~ ^2> Pr[*̂ 2/ — 1 I — n — Pi- (2.4.4)

Details concerning the estimation of this model are relegated to Appendix C.

Kim (1993) also estimates an unobserved components model for U. S. inflation with regime 
switching driven by two independent Markov processes.
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The parameter estimates are reported in Column 6 of Table 2.1 (Model 5). 

Although there is little difference between most of the parameter estimates of Models 

4 and 5, the behavior of Su and S 2l is markedly different during the 1969-70 and 

1990-91 recessions.

The filtered and smoothed probabilities that C, is in a contractionary phase are

plotted in Figures 2.5 and 2.6 respectively. The common permanent component, 

plotted in Figure 2.9, tracks the NBER recessionary periods extraordinary well. In 

contrast to Model 4, the probability terms identify all of the recessionary periods in 

the sample, adding to the evidence that the 1990-91 recession has permanently 

lowered output.

The filtered and smoothed probabilities that or, has been plucked down are plotted 

in Figures 2.7 and 2.8 respectively. The most notable difference in the behavior of 

Su and S2l is that the estimated probability terms for the latter fail to identify the

most recent recession. A plot of the common transitory component in Figure 2.10 

conveys the same message; namely that the 1990-91 recession did not yield a high 

growth recovery phase. This appears to be clear evidence that the 1990-91 recession 

is entirely permanent.

2.5 Conclusion

While the existing literature on business cycle asymmetry focuses on asymmetry 

either in the permanent component (growth rate) or the transitory component 

separately, this paper investigates the nature of business cycle asymmetry in both
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components within a dynamic factor model that incorporates both a common 

transitory factor and a common permanent factor.

The model and empirical results in this paper provide an answer to an important 

question of whether recessions permanently decrease output, as recently raised by 

Wynne and Balke (1992), Beaudry and Koop (1993), and Sichel (1994). This paper 

suggests that the answer is “yes.” The importance o f an asymmetric common 

permanent component in our dynamic factor model confirms this. Our parameter 

estimates imply that a six month recession permanently lowers the level of industrial 

production by 2.86%.

However, the importance of an asymmetric common transitory component also 

suggests that following a recession, output will experience above average growth: i.e. 

a fraction of the negative shocks to output associated with the recession will decay. 

This asymmetric transitory component potentially captures the plucking nature of 

recessions advocated by Friedman (1964, 1993) as in Kim and Nelson (1998b). 

Recently, Kim and Nelson (1998a), based on a dynamic factor model with only a 

permanent common component, provide evidence of positive duration dependence for 

recessions but not for booms. The significance of the asymmetric transitory 

component or the plucking term in our model potentially explains the findings of Kim 

and Nelson (1998a).
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Figure 2.1 Filtered Probability of a Recession, Model 4
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Figure 2.2 Smoothed Probability of a Recession, Model 4
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Figure 2.6 Smoothed Probability that C, is contracting, Model 5
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 2.8 Smoothed Probability that xt is contracting, Model 5
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Figure 2.10 Common Transitory Component, Model 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

Table 2.1. Maximum Likelihood Estimates

Parameters Model 1 Model 2 Model 3 Model 4 Model 5
<7 ----- —— 0.9869

(0.0082)
0.9801

(0.0070)
-----

P ---- —— 0.4267
(0.1710)

0.8320
(0.0555)

—

<7i ---- ----- — — 0.9812
(0.0106)

P\ ---- ----- ---- ---- 0.8751
(0.0660)

<72 ----- ----- — ----- 0.9829
(0.0067)

Pi ----- --- - — — ----- 0.8390
(0.0586)

01 0.5173 0.5175 0.4209 0.6875 0.6769
(0.079 l)a (0.0898) (0.0876) (0.2017) (0.2170)

02 0.0464 0.0786 0.0985 0.0455 -0.1145
(0.0721) (0.0779) (0.0756) (0.1472) (0.0735)

0.*
— 1.0316 — 0.6563 0.6388

(0.0879) (0.0832) (0.0915)
02 — -0.2167 — 0.0325 0.0731» z

(0.0743) (0.0674) (0.0733)
Vu 0.0369 -0.3299 -0.0401 0.1227 0.1654

(0.0702) (3.2524) (0.1685) (0.1365) (0.1590)
¥ \i -0.0003 0.2657 -0.0004 -0.0038 -0.0068

(0.0013) (0.7354) (0.0034) (0.0084) (0.0132)
V  21 -0.0923 -0.1788 -0.0757 -0.1288 -0.1518

(0.0547) (0.0711) (0.0566) (0.0570) (0.0576)
V n 0.0160 -0.0056 0.0210 -0.0041 -0.0058

(0.0489) (0.0218) (0.0525) (0.0037) (0.0044)
^31 -0.4255 -0.3945 -0.4017 -0.3971 -0.4057

(0.0561) (0.0523) (0.0563) (0.0533) (0.0539)
^32 -0.0453 -0.0389 -0.0403 -0.0394 -0.0412

(0.0119) (0.0103) (0.0113) (0.0106) (0.0109)
/l 0.6946 0.6133 0.6457 0.3316 0.3150

(0.0484) (0.0719) (0.0502) (0.0876) (0.0813)
r 2 0.5073 0.5667 0.4446 0.3344 0.3240

(0.0418) (0.0553) (0.0421) (0.0863) (0.0834)
0.4890 0.4403 0.4317 0.2309 0.2254

(0.0372) (0.0483) (0.0381) (0.0648) (0.0646)
A — 0.6134 — 0.4076 0.4030

(0.0676) (0.0742) (0.0721)
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* 2
----------- -0.0629 — 0.1551 0.1542

(0.0827) (0.0510) (0.0445)
/t3 ----------- 0.1560 — 0.2487 0.2477

(0.0676) (0.0486) (0.0475)
cr, 0.5593 0.0011 0.5195 0.4299 0.4489

(0.0426) (0.0403) (0.0540) (0.0554) (0.0600)
<? 2 0.7953 0.7134 0.8078 0.7950 0.7814

(0.0321) (0.0484) (0.0337) (0.0340) (0.0324)
<? 3 0.7318 0.7610 0.7490 0.7534 0.7476

(0.0300) (0.0287) (0.0317) (0.0285) (0.0288)
£0 ----------- — 0.0732 0.0628 0.2171

(0.0553) (0.0556) (0.0877)
A ---- — -3.350412 -0.6242 -1.7270

(0.7589) (0.2251) (0.3920)
T ---- — ---- -6.4700 -6.9620

(1.1430) (1.3673)
In L -472.2802 -460.7538 -881.0622 -849.2369 -850.1289

a Standard errors of the parameters estimates are reported in parentheses.
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Table 2.2 Permanent Decreases in the Indicators Due to a Recession

Series Length o f Recession

6 months 12 months

Industrial Production 2.86% 6.67%

Personal Income 
Less Transfer 

Payments

1.60% 3.63%

Manufacturing 
and Trade Sales

2.37% 5.54%
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CHAPTER 3: INFERENCE ON UNIT ROOTS AND TREND BREAKS IN 

MACROECONOMIC TIME SERIES

3.1 Introduction

The most damaging criticism of the hypothesis advanced by Nelson and Plosser 

(1982), that U.S. output contains a unit root, has come through the allowance of 

structural change under the alternative hypothesis o f trend stationarity. This was 

originally due to Perron (1989) and Rappoport and Reichlin (1989) who argued that 

Nelson and Plosser had overstated the frequency and magnitude of permanent shocks 

by failing to allow for a one time structural change under the alternative hypothesis. 

Perron showed that the real GNP series used by Nelson and Plosser is no longer 

consistent with the unit root hypothesis if a change in level, occurring at 1929, is 

considered. Perron’s conclusion is that from 1909 to 1970, there is only one 

permanent shock, a negative one, and the rest of the variation in output is transitory 

around a time trend.

In Perron (1989), the date of the trend break, 1929, was assumed to be known a 

priori. This drew criticism originally from Christiano (1992) who suggested that 

Perron’s results may be tainted by the assumption that the break date was known. 

Using a bootstrap procedure, he demonstrated that if the break date is allowed to be 

data dependent, then the critical values are much larger (in absolute value) than those 

tabulated by Perron. Zivot and Andrews (1992) and Baneijee et. al (1992) derived 

the limiting distribution of the unit root statistic when the break date is endogenized.
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Zivot and Andrews (1992) demonstrate that Perron’s conclusion that U.S. GDP is 

stationary around a broken time trend still holds once critical values are adjusted to 

reflect estimation of the break date.

Since Perron, the literature has been flooded by papers which study the 

asymptotic distribution of unit root and/or trend break statistics under various 

methods for selecting the break date. This paper adds to the literature by deriving the 

asymptotic distribution of statistics on structural change coefficients, as well as 

statistics testing the joint null hypothesis of a unit root and no structural change. The 

latter potentially offer an increase in power over statistics which just test the unit root 

null. We then apply our results to the Maddison (1995) annual U. S. real GDP series, 

and post-war quarterly chained real GDP.

This paper is organized as follows. Section 3.2 reviews the literature on testing 

for unit roots and trend breaks. Section 3.3 presents and derives the asymptotic 

distribution of our test statistics. Section 3.4 analyzes finite sample size and power. 

Section 3.5 applies our results to U.S. GDP. Section 3.6 summarizes and offers 

concluding remarks.

3.2 Testing for Unit Roots and Trend Breaks: A Brief Review o f the Literature

Scattered throughout the literature is a plethora of results on the asymptotic 

distribution of unit root and structural change statistics when the break date is 

endogenized. In this section, we review these results for models which allow for (at 

most) one break in trend, and point out what has yet to be done. We divide the cases 

into trending and non-trending data.
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3.2.1 Non-trending data

For non-trending data, the null hypothesis is a driftless unit root process with or 

without break, and the alternative is a stationary process with a one time change in 

mean. There are two methods of modeling trend breaks in the literature. The 

additive outlier (AO) approach models the break as an abrupt change, while the 

innovational outlier (10) approach allows the break to occur gradually. Since most of 

the empirical work has used the (IO) approach, we concentrate on this method. For a 

detailed discussion of modeling innovational and additive outliers, the reader is 

referred to Vogelsang and Perron (1994). In general, all statistics for non-trending 

data are asymptotically invariant to a mean shift under the null hypothesis. We thus 

present the following null hypothesis without a break:

H0 : y, =y,.t +u, (3.1)

where ut = i//‘(L)et; if/'{L) = (1 - pL)if/(L)\ tf/(L) = A(L)'B(L);  where

et ~ iid(0,(7: ) and A(L) and B(L) arep,h and qth order lag polynomials with roots

strictly outside the unit circle. The alternative hypothesis allows for a one time 

change in mean and is as follows:

H, : y t = c + y/(L){6DU(Tg)t + et), (3.2)

where DU(Ta), = 1 if t > TB and 0 otherwise; D(J(Ta)t is the “step dummy” capturing

a level shift at time Tb (the break date) and 0 represents the immediate change in 

mean under the alternative hypothesis. For this model, the test regression is:
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y, = c + 0DU(Ts )' + p y + 2>,zly,_l + «,, (3-3)

where f s is the estimated break date and k is the estimated lag length.

Following the theoretical treatment of Said and Dickey (1984), k lagged 

differences are included in the regression equation to account for serial correlation in 

the innovation sequence. Said and Dickey prove that if k diverges as T  diverges, but 

at a slower rate, then the asymptotic distribution of the ADF test is unaffected. For 

unit root tests which allow for structural change at an unknown change point, there 

does not exist a proof that such a result is valid. In subsequent theoretical derivations, 

we shall assume that the errors are i.i.d. which simplifies the presentation of the 

results. We follow Zivot and Andrews (1992) and conjecture that adding k lags to the 

regression will correct for serial correlation.

As another matter, the correct number of lagged terms to include in the regression 

equation is unknown and must be chosen by the researcher. Choosing k  too small 

results in a size bias, while choosing k  too large results in a loss o f power. In 

practice, certain data dependent methods for selecting k lead to an increase in power 

over fixing k  as in Said and Dickey (1984) (unless of course you happen to choose the 

correct value o f k). For standard ADF regressions, Hall (1994) proves that a number 

of such data based procedures leave the asymptotic distribution o f the unit root 

statistic unaffected when the error terms follow a pure AR(p) process. Ng and Perron

(1995) extend Hall’s results to the ARMA(p,q) case. Among the methods analyzed 

are a general to specific (GS) strategy and the Schwartz information criterion (SIC).
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As long as the maximum lag in the selection set is allowed to grow appropriately with 

the sample size, both methods are shown to have zero probability of underfitting as 

the sample size diverges. This implies that the asymptotic critical values, which 

assume that k  is known, are valid under such data dependent methods for selecting k. 

While such a result is likely to hold for unit root tests with structural change at an 

unknown point, a proof is likely to be quite involved. Again we conjecture that such 

a result exists, and in the subsequent empirical application, we shall employ both GS 

and SIC.

It should also be noted that for a particular regression, the lag length and break 

date are determined simultaneously. This will influence the finite sample 

performance of the test statistics. The appropriate method used to choose Tb is 

context specific. If rejection of the unit root hypothesis is desired, then inf tp is the

appropriate statistic. However, if one is just concerned with the dating of structural 

change, then choosing the break date to maximize some function of 6 is appropriate.

Table 3.1 presents the relevant statistics from regression (3.3), and their origin. 

Blank spaces indicate what has not yet be done. Perron and Vogelsang (1992) derive 

the asymptotic distribution o f the unit root statistic where the break date is chosen to 

minimize the unit root statistic. This is denoted as inf tp. They demonstrate that the

additive outlier approach is asymptotically equivalent to the innovational outlier 

approach. They also consider the distribution of the unit root statistic when the break 

is chosen to minimize the one sided t-test o f no structural change. This statistic is
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denoted as tpmm. In general, when a dummy variable statistic is used to choose the

break date, the asymptotic equivalence of unit root statistics between the AO and 10 

approaches does not hold.

Incorporating a priori knowledge of the sign of the break date can lead to an 

increase in power. Perron and Vogelsang demonstrate that tp m„g) has greater power

than inf tp when the break date is negative. A similar result holds for tPM#ĝ when 

6 >  0 .

The literature also contains some distributional results for tests statistics 

concerning structural change coefficients. Perron and Vogelsang (1992) derive the 

asymptotic distribution of the mean shift statistic, but critical values are not reported. 

Vogelsang (1997), modeling the break as an additive outlier, derives the asymptotic 

distribution of the mean-Wald, exp-Wald, and sup-Wald tests o f the hypothesis of no 

structural change for 1(0) and 1(1) data. The mean-Wald and exp-Wald tests cannot 

be used to estimate the break date, whereas the sup-Wald test can. These are 

extensions of the optimal tests considered by Andrews (1993) and Andrews and 

Ploberger (1994) for deterministically and stochastically trending data. However, the 

optimality properties do not carry over to trending data. Vogelsang just considers the 

2-sided Wald test that 6 = 0.  Also of interest are the 1-sided t-tests that 6 = 0, which 

may lead to higher power if the sign of the break date is known.

Two statistics in this context have not yet been computed. The first concerns 

inference on 6 when Tb is chosen to minimize t . Second is the Wald test of the
P
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joint null that p  = 1 and 9 = 0. We denote this statistic as sup Waldg p . This may

offer an increase in power over the inf tp and sup WaldB statistics which do not

explicitly test a subset of the null hypothesis.

3.2.2 Trending data

For trending data, three different alternative hypotheses have been considered. 

The first, labeled Model A by Perron (1989) allows for a change in level under the 

alternative hypothesis. Model B allows for a change in the growth rate under the 

alternative, and Model C allows for both types of structural change. In general, all 

statistics for trending data are asymptotically invariant to a level shift under the null, 

but not to a change in slope. Thus, statistics for Model B and Model C will have 

different limiting distributions depending on whether a change in growth is allowed 

under the null. However, as pointed out by Vogelsang and Perron (1994), for 

changes in growth of the size typically encountered in practice, the no break 

asymptotics provide a better approximation to the finite sample distribution of the 

unit root statistics. We will thus present the models without a change in level or 

growth under the null.

All three models have the common null hypothesis:

Ho : y, +« ,. (3.4)

where {w,} obeys the restrictions in (3.1). The three alternative hypotheses can be 

written as follows:

H* : y, =c +fa + y/{L)(9DU(Ta) ,+ * , ) ,  (3.5)
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H “ : y, =c +fit + y/{L){yDT{Ta)t +e,) , (3.6)

and

Hf : y, = c + fM + ̂ (L)(dDU(Tg), + yDT(TB ) ,+ * ,)  . (3.7)

The “ramp” dummyDT(Ta), is / -  Tb if t > Tb and 0 otherwise, and y is the

immediate change in growth allowed under the latter two alternatives. The

corresponding test regressions are:

» £ 
y, = c + 0DU(fB), + fit + py,_x + £ ^ , 4 y,_, + e, , (8)

i = i

*
y, = c + yDT(TB)t +fit + pyt_l + ' ^ W A y t- i + ^  . (9)

i=i

and

 ̂ k
y, =c  + f o U ( f B)t +yDT(fB)l +/3t + pyl_l + ' £ f r iAyt_l +et . (10)

i=i

For the sake of clarity, we shall discuss the origin of the statistics for all three 

models separately. Table 3.2 contains a description of the Model A statistics.

Choosing the break date to minimize the unit root statistic, Zivot and Andrews 

(1992), Baneijee et. al (1992), and Perron (1997) derive the distribution of unit root

statistic, inf t Ap , under the no break null with innovational outliers. Modeling the

break as an additive outlier, Vogelsang and Perron (1994) derive inf t* with no break

under the null. Vogelsang and Perron (1994) and Perron (1997) also derive the unit

root statistic when Tb is chosen via a statistic on 9.  We will generically refer to this
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as t A , even though the break date is usually chosen to maximize or minimize the

1-sided t-test that 6 = 0.

Baneijee et. al (1992) derive the Wald test that 0 = 0,  denoted sup Wald*. Also 

of interest are the 1-sided t-tests o f the same hypothesis.

As in the case of non-trending data, neither Wald*^^ nor sup Wald *p have yet

been considered. The former is appropriate when one performs the Zivot-Andrews 

Model A unit root test, and then wishes to perform inference on 0.  As mentioned 

before, the latter may offer an increase in power over either inf t A or sup Wald *.

Table 3.3 presents analogous results for Model B. Since they basically mirror 

Table 3.2, we forgo a discussion.

Model C results are presented in Table 3.4. Given that there are 2 structural 

change coefficients, there are many more cases to consider. To conserve space, we 

shall primarily focus on what has not yet been done. Of interest is the distribution of 

the unit root statistic, when the break date is chosen to maximize the joint Wald test 

that 0 = y = 0, denoted t c , . There is also the joint Wald test that 0 = y = 0' ’ p.WaldiO.r) J '

when the break date minimizes the unit root statistic, Waldc Although

Vogelsang derives the mean-Wald, exp-Wald, and sup-Wald tests of the hypothesis 

that Model C contains no level shift or a change in growth, again for both 1(0) and 

1(1) data, the individual 1 and 2-sided tests are of interest. Finally, there is the joint 

Wald test that p  = 1 and 0 = y  = 0.
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In Section 3.3, we shall catalog the distributions of test statistics for no structural 

change, and derive the distributions of test statistics for the joint null hypothesis that 

there is a unit root without a break in trend.

3.3 Asymptotic Distribution o f  the Test Statistics

In this section, we derive the asymptotic distributions of structural change 

statistics, as well as the joint distributions of statistics concerning the largest 

autoregressive root and structural change coefficients. The latter potentially offer a 

gain in power over tests which do not explicitly test the unit root hypothesis. In the 

theorems to follow, we restrict the innovation sequence to be i.i.d., but the results 

remain valid in the presence of ARMA(p,q) errors. We consider non-trending and 

trending data separately.

3.3 Non-trending data

Following Zivot and Andrews (1992) and Baneijee et. al (1992) we specify a no 

break null hypothesis and innovational outliers. Recall the null hypothesis and test 

regression:

H0 : t, =T, (3-D’

and

y, = c  + k > U { t B)t + p y , . x + Y d¥A y , -x  + «, • (3-3)’
i=i

T
Let A = —  be the break fraction. For all the results which follow, we assume that A 

T

remains constant as T -» o o .
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We first consider 4 different statistics to test the null hypothesis that 0 = 0. Let 

sup Waldg and sup tey be the 2-sided tests where A is chosen to maximize the Wald

statistic, and the absolute value of the t-statistic respectively. Also, let supf# and

in f tebe the 1-sided tests which maximize and minimize the t-statistic respectively.

The latter should be used if one has a priori knowledge o f the sign of 0.

Following Zivot and Andrews, we can characterize the asymptotic distributions of 

these statistics in terms of projection residuals. Let D U’(A,r) be the projection 

residual from the continuous time regression:

D U (A ,r )= d0 + a lW(r) + D U \A ,r ) ;  

where D U \A ,r )  = 1 if r > A and 0 otherwise, and W(r) is standard Browning 

motion. That is, a 0 and a, solve

min f jD U (A ,r ) -a 0 -aJV(r)\~ dr
0

a

We have the following theorem.

Theorem 3.l.A Let {y,} be generated under the null hypothesis (3.1) and let {«,} be

i.i.d., mean 0, with 0 < c r  < oo. Let A be a closed subset of (0,1). Then,

y ' / i  \ 2
sup Wald,(A) => sup \D U ’(X,rYdr \D U ’(A,r)dW(r)

VO J  Vo
A. e A A e A
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sup tm(k) => sup 

k  e A k  e  A

\ - v -
\ D U \ k , r f d r  \ D U \k , r ) d W ( r )

and

( i Y Y'
sup tg{k) => sup \ D U \ k , r ) ‘dr jD U ‘(k,r)dW(r)

\ o  J  \ 0
k  e A k  e A

inf t„(k) 

k  6 A

inf 

k  e A

(\ X  ' f '
\ D U \ k , r ) zdr\  jDU'(k ,r)dW (r)

Vo J  Vo

as T ^xx>, where => denotes weak convergence in distribution in the sense of 

Billingsley (1968). The proof of this theorem proceeds along the lines o f Zivot and 

Andrews (1992) and is therefore omitted. Perron’s (1997) proof does not require that 

we consider the closed unit interval for X. However, this only holds for unit root 

statistics, and not when a dummy variable statistic is used to determine the time of 

structural change.

We also consider the distribution of the step dummy t-statistic when the break 

date is chosen to minimize the unit root statistic. This is useful in circumstances 

where the unit root statistic is calculated as in Zivot and Andrews (1992), and then 

one wants to perform inference on 0. Following is the distribution o f the Wald test
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for 0 = 0,  choosing the break date to minimize tp. We denote this statistic as 

Wald9:m, p, .

Theorem 3.1.B Let {y ,} be generated under the null hypothesis (3.1) and let {m,} be

i.i.d., mean 0, with 0 < c t: < qo. Let A  be a closed subset of (0,1). Then,

^ { ' \ D U \ X , r ) ' - d r ' \  t ' jD U 'a \r )d lV (r )]
V o  / V o

where

r  i y  V 1 V
X  =argmin \W' (A,r)'~ dr j W  (A,r)dW(r)

Vo / V o  /
A e A

and the last term is the Perron and Vogelsang (1992) unit root statistic. Specifically, 

W ’( X r )  is the projection residual from the continuous time regression:

W(r) = a Q+ a ,D U ( l , r )  + W'(X,r) .

We now turn to the distribution o f the Wald test of the null that 0 = 0 and p  = 1. 

Let sup Wald9p denote this test statistic. Let X {(X,r)' = (DU(Xr),W(r))  and

X,(r )  = 1. Then ArV(A,r)is the projection residual from the continuous time 

regression which minimizes:

min J||X , ( X r ) - a 0X,(r)\ dr
0

a n

We then have the following result:
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Theorem 3.1.C Let {y t} be generated under the null hypothesis (3.1) and let {u,} be

i.i.d., mean 0, with 0 < cr1 < oo. Let A be a closed subset o f  (0,1). Then,

X 6 A

The asymptotic critical values for these statistics are presented in Table 3.5. The first 

row corresponds to the sup-Wald test analyzed by Vogelsang (1997) when the data 

are integrated. To simulate the asymptotic critical values, we set the sample size at 

1000 and calculated the finite sample versions of the terms in Theorem 3.1 using 

Normal errors. We then repeated this 50,000 times. An upper bound on the standard 

errors of the critical values is 0.0022.

3.3.2 Trending data

We now turn to the analysis of trending data. Recall the null hypothesis and test 

regressions:

sup WaldB p (A) => 

X e  A

V V ' \

sup J X ’(X ,r)dW(r) \ X ’x(X,r)X;(X,rydr j  x;(X,r)dW(r)
J

H o  : y, =M + y,.i + « ,. (3.4)’

ii
y, = c  + 0DU(TB)'+j3t + py,_i + £ ij/lA y t_, + e, , (3.8)’

y, = c + yDT(TB)t + pt + py,_x + £ w A y t-\ + . (3.9)’
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and

y, = c + 9DU(Tb), +yDT(TB)t +/3t + pyt-\ + + et • (3.10)’
i = \

For Model A we first consider supfF/,supr^ , sup/^and inf t * . Likewise, for 

Model B we consider sup FT s ,supf*, supt B ,and inf t* . Let D U A{X,r) and

D T B(X,r) be the projection residuals from the following continuous time

regressions:

DU(A,r) = d 0 + d xr + d 2fV(r) + DUA(/i,r) ,

and

DT(A,r) = d 0 + d xr + d 2W(r) + DTB(A,r)

respectively.

Theorem 3.2.A. Let {y,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with 0 < c r  < oo. Let A be a closed subset of (0,1). Then,

(\ y ' / i  V
sup Wald*(A) => sup JD U A(A,r)zdr jD U A(A,r)dW(r)

vo y Vo
A g A A 6 A
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sup C (/t) => sup 

A e A  A e A

(i v 'V '
f D U A(A,r)2dr jD U A(A,r)dW(r)

vo y vo

V" Vi
sup t A{A) => sup \ D U A(A,r)2dr \D U A(A,r)dW(r)

A e A A. e A

and

f \  Y ' V 1
inf t A(A) => inf f D U A (A,r)2dr \ \D U A(A,r)dW(r)

Vo J  Vo

A e  A A e A

Similarly,

sup Wald I  {A) => sup f D T \ A , r ) l dr \  \D T B (A,r)dW{r) ]
i
Jy \0 J  j

A € A A e A

sup t.® (A) => sup 

A e  A A e A

j D T B (A,r)z dr I \ \ D T B{A,r)dW{r)

r i
sup t B(A) => sup j D T B(A,ry'drj  jj£>r®(A,r>/fF(r)J

A e A A e A
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and

inf t*(/l) => inf j D T B(A,r)zdr \ D T 8(A,r)dW(r)
Vo

A e A A e A

Critical values for these statistics are presented in Tables 3.6 and 3.7 respectively. 

The first row in each table corresponds to the F-statistic computed by Banerjee et. al 

(1992). Also reported in the 5th rows of Tables 3.6 and 3.7 are sup WaldAmnp) and

sup WaldBmnp), the Wald tests of no structural change when the break is chosen to

minimize the unit root statistic. These distributions are derived in the following 

theorem.

Theorem 3.2.B. Let (y,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with 0 < a" <°o. Let A be a closed subset o f (0,1). Then,

W a U ; ^ „ W  => f D U \X \ r ) ' - d r  \ D U \ X ‘ ,r) iW(r)
Vo 7  Vo

and

WaldBMflp)(A) => \D T B{AB, r f d r  \D T B(AB ,r)dW(r)

where

A4 = argmin j W A(A,r)2dr \ W A(A,r)dW{r)

A e A
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and

(\ Y' Y '
XB = argmin JfP"(A,r)2</r [ \ W B (X,r)dW{r)

Vo 0

X e A

where the last two terms are the Zivot-Andrews unit root tests for Models A and B 

respectively. That is, fVA(X,r) and W a(X,r) are the projection residuals from the 

continuous time regressions

W(r) = d 0+d,r + d 2DU(X, r) + W A (X, r)

and

W(r) = a 0 + d tr + a 2DT(X,r) + W B (X,r)

respectively.

Finally for Models A and B, we derive the limiting distributions for 

sup Wald *p and sup Wald Bp, the tests of the joint null hypothesis of a unit root and no

structural change. Let X,A(X,r)' = (DU(X,r) ,W(r)) , and

X B(X,r)f = (DT(X,r) ,W(r)) .We then have the following.

Theorem 3.2.C Let {yt} be generated under the null hypothesis (3.4) and let {ut} be

i.i.d., mean 0, with 0 < cr* < oo. Let A  be a closed subset o f (0,1). Then,

sup Wald9p (X) : 

X 6 A
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sup | j X t1’(A,r)dfV(r) I [ jX ? 'U , r ) X t1\ A , r y d r  ( \X ? ’(A,r)dW(r) 

A e A

and

sup Wald*p(A) =>
A e  A

sup [ )x ° \A ,r )X ? '(A ,r ) 'd r j  Q * ,fl‘(A,ry/PF(r)

A e A

Critical values for these are reported in the 6th column of Tables 3.6 and 3.7.

We now turn to Model C. For this model, we consider 8 individual test statistics 

for 0 and y.  These are inf t cB, supt cd , supt ce], sup Waldc9 , inf t f , s u p , supt cr , and

sup Wald^. Let D(Jc(A,r) and D T c(A,r) be the projection residuals from the 

following continuous time regressions:

DU(A,r) = a 0 +6:^ + a 2fV(r) + a iDT(A,r) + D U C (A,r)

and

DT(A,r) = a Q + a ir + a 2W(r) + a iDU(A,r) + D T c(A,r)

respectively.

The distribution of these statistics are presented in the following theorem.
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Theorem 3.2.D Let {y ,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with 0 < cr2 < oo. Let A  be a closed subset of (0,1). Then,

sup Waldce (sI) => sup [ ' lD U c(*.,r)2d r \ [ ) D U c{X,r)dW(r)
Vo

X e  A X 6 A

sup t£,(A) => sup 

X e A X e A

j D U c (X,r)2dr\  \ \D U C{X,r)dW{r)

( \  Vl/Y l \
sup tcg (yI) => sup \ D U c(X,r)-dr \D U C(X,r)dW(r)

Vo /  Vo

X € A X e A

r i V 'V
inf /9c (/l) => inf \ D U c (X,ry-dr \D U C(X,r)dW(r)

Vo J  Vo

X e A X e A

sup Waldcr {X) sup \D T c (X,r)-dr \D T C(X,r)dW(r)
\-

X e A X e A
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sup t^(A) => sup 

A e A  A e A

v ‘'V l

J  Vo
\D T C (A,r)z dr] \D T C (A,r)dW(r)

sup t cr (A) => sup \D T c{A,r)zdr \D T C(A,r)dfV(r)
V ' V i

J  \ 0

A e A A e A

and

inf t f (A)  => inf JZ)rc (/l,r)V r I j D r c ( /l ,r> f^ (r)  I
vo J Vo J

A e A A e A

Asymptotic critical values for these statistics appear in the first 8 rows o f Table 3.8.

We next consider the Wald test for the joint hypothesis that there is neither a level 

shift nor a change in growth (0 = y = 0 ) . Let X,c(A,r)' = (DU(A,r) ,DT(A,r)) . We 

then have the following result.

Theorem 3.2.E Let {y,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with Occr '  <oo. Let A be a closed subset of (0,1). Then,

sup Waldgr (A) => 
A e A
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sup [ \X?(A,r)dW(r)  \ [ f x r ( A , r ) X tc'(A,r)'dr [ jXf '(A,r)dW(r)  

A e A

Critical values for this statistic are in the 9th row of Table 3.8.

What is also potentially of interest is the Wald test of no structural change when 

A minimizes the unit root statistic. We denote this statistic as Waldc . This
e.r .mflp)

distribution is presented in the following theorem.

Theorem 3.2.F Let {y,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with 0 < <x: < oo. Let A  be a closed subset of (0,1). Then,

r ) x ' \ A c,r)dW(r)\ { ) x ?  (Ac ,r)X,c’(Ac ,r)'</rl f )x<'(Ac ,r)dW{r)
vo y Vo y vo

where

( '  V'Y1 ^Ac =argmin \W C (A,r)2 dr \W C (A,r)dW(r)
Vo y Vo

A e A

is the Zivot Andrews Model C unit root statistic, i.e. W c(A,r) is the projection 

residual from the continuous time regression:

fV(r)=a0 +a,r  + d 2DU(A,r) + d cDT(A,r) + f r c (A,r) .
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Critical values for this statistic are in the 10th row of Table 3.8.

We conclude this section with the joint distribution of the Wald test that there is a 

unit root and no structural change (p  = 1,0 = y  = 0). Denote this statistic by

sup Waldg r p . Let X tc(A,r)' = (DU(A,r),DT(A,r),IV(r)). We then have,

Theorem 3.2.G Let {y,} be generated under the null hypothesis (3.4) and let {«,} be

i.i.d., mean 0, with 0 < <j ~ < <=o. Let A be a closed subset o f (0,1). Then,

s\xpWaldcarp(A)=>
A e A

sup \ X ‘\ A c ,r)dW{r) \X < \A C , r ) X ‘\ A \ r ) ' d r  jX,c'(Ac ,r)dfV(r)

A e A

The last row of Table 3.8 presents the asymptotic critical values for this statistic.

3.4. Finite Sample Size and Power

In this section, we ascertain the finite sample properties of the statistics presented 

in Section 3.3, in terms of size and power. Table 3.9 presents the empirical size of 

selected tests statistics at the nominal 0.05 and 0.10 significance levels for samples 

sizes T=100 and 200. We set the number o f iterations to 5,000 for all simulations to 

follow.
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Generally, the asymptotic critical values provide a reasonable approximation to 

the finite sample distributions, for samples sizes as small at 100. Doubling the 

samples size only results in a slight mitigation of the size distortion.

We not turn to the relative power of the joint and individual test statistics. We 

consider two values for p under the alternative hypothesis; 0.9 and 0.7. The range of 

0 and y considered are 0.5, I, and 2. The last value corresponds to a trend break 2 

times the size of the innovation standard deviation. We also consider negative values 

of 0 and y. The results for negative values are not qualitatively different from the 

positive values and are available upon request from the author.

Table 3.10 presents the size-adjusted power for non-trending data at the 0.05 and 

0.10 significance levels. A few points are in order. First, the 1-sided test for no 

structural change has higher power than the 2-sided test. This result corroborates the 

finding of Vogelsang and Perron (1994) and Perron (1997) that imposing a sign for 

the trend break leads to an increase in power. Second, the sup Wald6p statistic

uniformly dominates the sup Walde and sup te for all values of 0 and p considered.

However, all statistics are dominated by the 1-sided unit root test. This result is 

analogous to a finding o f Dickey, Bell, and Miller (1986). They demonstrate that in 

standard ADF tests, the 1-sided t-statistic for the unit root null has more power than 

the 2-sided F-test o f the joint null o f a unit root and no time trend.

Thus, in practice, if  the researcher is only interested on whether or not the time 

series has a unit root, the inf tp should be used. However, if the researcher is
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interested in performing inference on 0, then for non-trending data, the sup Walde p

should be implemented.

A different picture emerges for trending data. Tables 3.11-3.13 present size 

adjusted power for Models A, B, and C respectively. To conserve space, we only 

present results for 0 and y both equal to 0.5 or 1.0 for Model C. For Model A, the 

test which has the highest power depends on p. For p=0.9 and a level shift in the 

range of 1 to 2 innovation standard deviations, the sup t£ test is the clear winner. 

However, for the less persistent alternative (p=0.7), the sup Wald£p test outperforms 

the sup tg test.

Turning now to Model B, for changes in growth in the range of 0.5 to I 

innovation standard deviation, the 1-sided test, sup/*,  is the clear winner for both

values of T and p. Furthermore, the 1-sided unit root test, inf tp , dominates the joint 

test. There does not appear to be a distinct advantage to performing the

n
sup Waldy p test over the 1-sided tests for structural change or a unit root. For larger

changes in growth, all tests perform remarkably well. But as we shall see in the next 

section, changes in growth this size do not occur in U.S. output. Therefore we do not 

report power results for trend breaks greater than 2 innovation standard deviations.

A similar pictures emerges for Model C. The joint Wald test of a unit root and no 

structural change, sup Waldg y p is dominated by every individual 1-sided test with
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the exception of supr^. Also of interest is that the joint test that 0=y=O has less

power than the 2-sided test that y=0.

3.5 Application to U. S. GDP

As an empirical application, we reconsider the Zivot-Andrews unit root tests on 

annual and quarterly U.S. real GDP analyzed by Murray and Nelson (1998). Murray 

and Nelson perform the Model A unit root test on the Maddison (1995) annual GDP 

series (1870-1994), and the Model B unit root test on post-war quarterly chained U.S. 

GDP (1947.1-1997.3). They demonstrate that whether the lag length is selected by 

the general to specific (GS) strategy or the Schwartz information criterion (SIC), the 

unit root null is rejected at the 0.05 level for annual GDP, but not at the 0.10 level for 

quarterly GDP. These regressions are presented in Table 3.14. Since each test 

considered in this section chooses the same break date for annual and quarterly data 

(1929 and 1972.2), we present the results for each series and lag selection procedure 

as one regression. As in Perron (1989) and Zivot and Andrews (1992), the maximum 

lag length considered is 8 for annual data and 12 for quarterly data. For either 

frequency, GS chooses the maximum lag allowed, while SIC chooses only 1.

Using the critical values from the 5th row in Tables 3.6 and 3.7, we can assess 

whether or not d o x y , the step and ramp dummy coefficients, are significant when 

the break date is chosen to minimize tp . (These are the Waldgm(lp) and Wald*mflp)

statistics). For the annual series (Model A), the level shift is significant at the 0.10 

level for GS, but insignificant for SIC. While both methods of lag selection result in
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rejection of the unit root null, GS suggests stationarity around a broken trend, while 

SIC indicates stationarity around a constant trend.

To assess whether there has been structural change while not explicitly testing the 

unit root hypothesis, we perform the 1-sided inf t* test. This statistic is significant at 

the 0.05 level for GS, but not significant at the 0.10 level for SIC.

We now turn our attention to the sup Wald* p statistic, which tests the joint null

hypothesis. This statistic is significant at the 0.05 level for both methods of lag 

selection. It thus suggests that GDP is stationary around a broken trend. The 

disagreement between sup Wald *p and inf t *, for SIC, may be due to poor power

properties of inf t* when only a subset of the null is violated, i.e. p  < 1 and 0 * 0 .

In Section 3.4 we demonstrated that for level shifts of the size estimated for this 

series (1 to 2 innovation standard deviations), and a non-local autoregressive root 

(0.7), the power of the sup Wald*p statistic dominates the 1-sided tests for structural

change, but is dominated by the 1-sided Zivot-Andrews unit root test. Given that 

none of the statistics have an appreciable finite sample size distortion, these results 

lead us to conclude that annual GDP is stationary around a broken trend.

Analogous statistics for quarterly GDP are also presented in Table 3.14. For this 

series, which appears to have a unit root, we find that the pre and post break growth 

rates, based on the Wald*mp) statistic, are not statistically different under either

method o f lag selection. A different picture emerges if we compute the 1-sided inf t *
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test for a change in growth. Under GS, there is not a statistical difference in growth 

rates, but the SIC results in a rejection of the null at the 0.10 level.

Turning to the supWald.arp , for both methods of lag selection the joint test

corroborates the Zivot-Andrews unit root test. Neither is significant at the 0.10 level.

We demonstrated in Section 4 that for the small changes in growth (less that 1 

innovation standard deviation) that this series appears to exhibit, the I -sided tests for 

structural change uniformly dominate all other statistics in terms of power. Since 

both methods of lag selection lead to different outcomes for the inf t* test, we can

conclude that there is a unit root, but we are uncertain as to whether the rate of growth 

has changed in the postwar period.

3.6 Conclusion

The purpose of this paper has been to fill in the gaps in the literature concerning 

the asymptotic distributions o f test statistics for a unit root and/or structural change. 

We derive 1 and 2-sided tests for the null of no structural change as well as joint tests 

of the hypothesis that a time series is integrated without structural change. The 

motivation for the latter is the potential increase in power over tests which do not 

explicitly test the unit root hypothesis.

For Model A, no clear winner emerges. For level shifts of the size estimated for 

U.S. real GDP, the joint test has higher power than individual tests for non-local 

autoregressive roots. However, the situation is reversed for a local root. For Model
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B, the 1-sided tests for structural change dominate the joint tests for small changes in 

growth, regardless of the size o f the autoregressive root.

We apply the tests derived here to annual and quarterly U.S. real GDP. Almost 

all tests agree that the 1870-1994 annual GDP series is stationary around a broken 

time trend with a change in level occurring at 1929. While all tests indicate that the 

1947.1-1997.3 quarterly GDP series has a unit root, there is not a consensus as to 

whether or not the growth rate began to slow in 1972.2.
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Table 3.1 Non-trending Data in the L iterature

Statistic Origin
inf t P PV: AO/IO

^  p . m t l O )
PV: AO/IO

W a ld e n
sup Waldg V: AO - P: AI/IO
sup Waldep

PV is Perron and Vogelsang (1992). V is Vogelsang (1997)

Table 3.2 Trending Data in the Literature; Model A

Statistic Origin
inf t A ZA: IO - BLS: 10

VP: AO - P: 10
t A BLS: 10

p . V a U i B )
VP: AO - P: 10

WaldA
B .m U p )

sup WaldA BLS: IO
sup WaldAp

ZA is Zivot and Andrews (1992). BLS is Baneijee, Lumsdaine, and Stock (1992). VP is Vogelsang and Perron (1994). P is 
Perron (1997).
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Table 3.3 Trending Data in the L iterature; Model B

Statistic Origin
inf / ; ZA: IO - BLS: IO

VP: AO - P: AO
t * BLS: IO

P.fa/dir)
VP: AO - P: AO

WaldB
r.mftp)

sup Wald * BLS: IO

Wald*
r.inflp)

ZA is Zivot and Andrews (1992). BLS is Baneijee, Lumsdaine, and Stock (1992). VP is Vogelsang and Perron (1994). P is 
Perron (1997).

Table 3.4 Trending Data in the Literature; Model C

Statistic Origin

inf t c
P

ZA: IO 
VP: AO - P: IO

t c
1 p . W a l d ( r )

VP: AO - P: AO

t c
p . W a l d ( d . p )

Waldc
e . r . m d p )

sup Waldg
sup Waldcr
sup Waldcgr V: AO

sup Waldcg ^
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sup Wald# 
sup to, 
sup to 
inf to
Waldo. mftP) 
sup Waldo.p

Table 3.5 Asymptotic Critical Values; Non-trending Data

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

22.477 19.934 17.864 15.633 9.538 5.501 4.683 4.085 3.524
4.741 4.465 4.227 3.954 3.088 2.346 2.164 2 .0 2 1 1.877

4.558 4.229 3.959 3.650 2.370 1 .1 0 2 0.849 0.634 0.393
-4.519 -4.222 -3.950 -3.643 -2.352 - 1 .1 0 2 -0.836 -0.621 -0.400
21.975 19.464 17.442 15.236 8.900 4.367 3.441 2.809 2.276
25.305 22.798 20.742 18.610 12.625 8.638 7.7979 7.126 6.374

Table 3.6 Asymptotic Critical Values; Model A

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

sup Waldo 
sup to, 
sup to 
inf to
Waldo.infjp,

sup Waldo.p

24.130 21.547 19.448 17.315 11.371 7.181 6.293 5.606 4.906
4.912 4.642 4.410 4.161 3.372 2.680 2.509 2.368 2.215
4.705 4.404 4.154 3.871 2.971 2.244 2.077 1.948 1.805
-4.723 -4.424 -4.174 -3.896 -2.975 -2.239 -2.074 -1.947 -1.811
23.870 21.179 19.067 16.830 10.649 6.231 5.280 4.598 3.929
29.843 27.195 25.141 22.898 16.618 12.346 11.390 10.534 9.587

sup Wald, 
sup t* 
sup t, 
inf t,
W aldy.initp ,

sup Wald,,p

Table 3.7 Asymptotic Critical Values; Model B

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

20.710 17.831 15.697 13.261 6.502 2.828 2 .2 2 1 1.808 1.411
4.551 4.223 3.962 3.642 2.550 1.682 1.490 1.345 1.188
4.321 3.968 3.650 3.261 1.787 0.576 0.292 0.058 -0 .2 1 2

-4.291 -3.953 -3.634 -3.269 -1.783 -0.579 -0.293 -0.052 0.216
20.589 17.814 15.521 13.101 5.683 1.889 1.343 0.996 0.701

25.168 22.635 20.542 18.363 12.114 7.908 7.023 6.398 5.768
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Table 3.8 Asymptotic Critical Values; Model C

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

sup Walde 
sup te, 
sup te 
inf te
sup Wald, 
sup t* 
sup t, 
inf t,
sup Walde,T 

Walde.r,inffP) 
sup Walde.T.p

24.852 22.143 20.033 17.878 11.859 8.124 7.307 6.676 6 .0 1 1

4.985 4.706 4.476 4.228 3.444 2.850 2.703 2.584 2.452
4.785 4.469 4.221 3.935 3.035 2.339 2.179 2.047 1.901
-4.776 -4.485 -4.236 -3.939 -3.040 -2.346 -2.182 -2.056 -1.919
25.044 21.889 19.355 16.689 9.597 5.739 4.995 4.467 3.932
5.004 4.679 4.400 4.085 3.098 2.396 2.235 2.114 1.983
4.781 4.397 4.086 3.721 2.548 1.670 1.458 1.283 1.092
-4.749 -4.404 -4.086 -3.717 -2.544 -1.669 -1.457 -1.285 -1.091
29.296 26.423 24.095 21.695 14.734 10.008 9.011 8.223 7.386
28.807 26.071 23.683 21.126 13.592 8.140 6.969 6.093 5.213
34.244 31.430 29.264 26.881 2 0 .1 0 0 15.436 14.408 13.552 12.603
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Table 3.9 Finite Sample Size

! Non-trending data

T=100 T=200
5.0% 1 0 .0 % 5.0% 10 .0%

sup Walde 0.047 0.096 0.051 0 .1 0 2

sup te, 0.048 0.096 0.051 0 .1 0 2

sup te 0.048 0.086 0.047 0.092
inf te 0.047 0.086 0.054 0 .1 0 1

sup Walde,p 0.054 0 .1 0 1 0.052 0.098

Model A

sup Walde 0.041 0.076 0.442 0.087
sup te, 0.041 0.076 0.442 0.087

sup te 0.040 0.075 0.502 0.094
inf te 0.038 0.074 0.380 0.078
sup Walde,p 0.059 0.108 0.056 0.104

Model B

sup Wald, 0.065 0.116 0.055 0.109
supt* 0.065 0.116 0.055 0.109

sup t, 0.055 0.104 0.057 0 .1 0 1

inf t, 0.062 0.106 0.057 0 .1 0 1

sup Wald,,p 0.075 0.138 0.062 0 .1 2 0

Model C

sup Walde 0.040 0.074 0.048 0.090
sup te, 0.040 0.074 0.048 0.090

sup te 0.038 0.074 0.045 0.086
inf te 0.036 0.071 0.045 0.089
sup Wald, 0.058 0.104 0.046 0.098
sup t^ 0.058 0.104 0.046 0.098

sup t, 0.049 0.089 0.049 0.095
inf t, 0.055 0.096 0.049 0.094
sup Walde,7 0.057 0 .1 0 0 0.053 0.099
sup Walde,,,p 0.660 0.117 0.592 0.109
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Table 3.10 Size Adjusted Power; Non-trending Data

T=100 T=200
5.0% 10.0% 5.0% 10.0%

p=0.9
0=0.5 sup Walde 0 .020  0.041 0.008 0 .0 2 0

sup te 0.014 0.028 0.015 0.036
inftp 0.134 0.228 0.391 0.572
sup Waldfl,p 0.105 0.191 0.337 0.516

0=1.0 sup Walde 0.021 0.042 0.013 0.028
sup te 0.035 0.080 0.026 0.057
inftp 0.142 0.234 0.389 0.570
sup Walde.,, 0.100 0.194 0.336 0.515

0=2.0 sup Walde 0.036 0.067 0 .0 2 2  0.048
sup te 0.064 0.137 0.050 0.107
inftp 0.146 0.250 0.382 0.562
sup Walde.p 0.107 0.196 0.323 0.494

p=0.7
0=0.5 sup W alde 0.011 0.024 0.011 0.019

sup te 0.021 0.050 0.018 0.044
inftp 0.838 0.923 1.000 1.000
sup Walde.p 0.758 0.885 1.000 1.000

0=1.0 sup W alde 0.025 0.056 0.034 0.067
sup te 0.054 0.113 0.069 0.129
inftp 0.842 0.931 1.000 1.000
sup Walde,p 0.756 0.881 1.000 1.000

0=2.0 sup W alde 0.137 0.236 0.284 0.418
sup te 0.237 0.385 0.430 0.593
inftp 0.842 0.928 1.000 1.000
sup Walde.0 0.735 0.865 1 .0 0 0  1 .0 0 0
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Table 3.11 Size Adjusted Power; Model A

T=10O T=200
5.0% 10.0% 5.0% 10.0%

p=0.9
0=0.5 sup W alde 0 042 0.085 0.052 0.099

sup te 0.057 0.112 0.035 0.070
inftp 0.096 0.188 0.27 1 0.430
sup Walde,p 0.090 0.161 0.213 0.359

0=1.0 sup W alde 0.116 0.198 0.226 0.344
sup te 0.183 0.301 0.318 0.465
in ftp  0.081 0.149 0.299 0.466
sup Walde.p 0.095 0.169 0.282 0.443

0=2.0 sup Walde 0.732 0.831 0.947 0.976
sup te 0.827 0.911 0.972 0.991
inftp 0.243 0.386 0.791 0.895
sup Walde.p 0.582 0.706 0.892 0.946

p=0.7
0=0.5 sup W alde 0.019 0.039 0.021 0.040

sup te 0.027 0.054 0.030 0.067
inftp 0.707 0.850 1.000 1.000
sup Walde.p 0.647 0.789 0.998 1.000

0=1.0 sup W alde 0  0 6 6  0.124 0.205 0.306
sup te 0.116 0.205 0.286 0.422
inftp 0.639 0.811 0.999 0.999
sup Walde,p 0-582 0.733 0.998 0.999

0=2.0 sup W alde °-548 0.694 0.949 0.978
sup te 0.690 0.815 0.975 0.978
in f tp  0.751 0.877 1.000 1.000
sup Walde.p 0.743 0.844 0.996 1.000
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p=0.9
Y=0-5

7= 1.0

7= 2.0

7=3.0

p=0.7
7=0.5

7= 1.0

7=2.0

Table 3.12 Size Adjusted Power; Model B

T=100
5.0%

sup Wald, 0.192
sup t, 0.348
inftp 0.109
sup Waldy p 0.095

sup Wald, 0.513
sup t, 0.705
inf tp 0.274
sup W ald,p 0.241

sup Wald, 0.979
sup t, 0.995
inf tp 0.930
sup Wald,,p 0.920

sup Wald, 1.000
sup t, 1 .0 0 0

inftp 0.999
sup Wald,-P 0.999

T=200
10.0% 5.0% 10.0%

0.332 0.612 0.793
0.586 0.799 0.938
0.214 0.409 0.609
0.179 0.336 0.506

0.691 0.973 0.994
0.878 0.994 0.998
0.454 0.893 0.956
0.395 0.850 0.928

0.994 1.000 1.000
0.999 1.000 1.000
0.966 1.000 1.000
0.960 1.000 1.000

1.000 1.000 1.000
1.000 1.000 1.000
0.999 1.000 1.000
1.000 1.000 1.000

sup Wald, 
sup t, 
inf tp
sup Wald, p

sup Wald, 
sup t, 
inftp
sup Wald, p

0.814
0.932
0.735
0.687

0.976
0.996
0.902
0.868

0.926
0.989
0.883
0.835

0.995
0.999
0.967
0.950

1.000 
1.000 
1.000 
0.999

1.000 
1.000 
1.000 
1.000

1.000
1.000
1.000
1.000

1.000 
1.000 
1.000 
1.000

sup Wald, 
sup t, 
inf tp
sup Wald,,p

0.999
1.000
0.999
0.999

1.000
1.000
0.999
0.999

1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
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Table 3.13 Size Adjusted Power; Model C

T=100 T=200
5.0%

p=0.9
0=0.5 sup Walde 0.068
y=0.5 sup te 0.091

sup Wald, 0.152
sup t, 0.294
inftp 0.079
sup Walde., 0.116
sup Waldfl.T-p 0.059

0 = 1.0 sup Walde 0.226
7= 1.0 sup te 0.289

sup Wald, 0.396
sup t, 0.602
inf tp 0.134
sup Walde.r 0.356
sup Walde.,,p 0.169

p=0.7
0=0.5 sup Walde 0.084
7=0.5 sup te 0 .1 1 1

sup W ald, 0.689
sup t, 0.867
inf tp 0.557
sup Walde,-, 0.529
sup Walde.,,p 0.404

0 = 1.0 sup Walde 0.283
7= 1.0 sup te 0.391

sup W ald, 0.921
sup t, 0.980
inftp 0.658
sup Walde.T 0.842
sup Walde.7.p 0.617

10.0% 5.0% 10.0%

0.127 0.115 0.208
0.164 0.183 0.289
0.274 0.544 0.705
0.489 0.707 0.874
0.150 0.221 0.370
0.213 0.348 0.518
0.117 0.167 0.283

0.323 0.557 0.686
0.399 0.681 0.794
0.580 0.905 0.965
0.783 0.966 0.993
0.243 0.493 0.678
0.512 0.857 0.932
0.293 0.621 0.763

0.161 0.524 0.694
0.205 0.621 0.783
0.853 1.000 1.000
0.958 1.000 1.000
0.728 0.998 1.000
0.709 0.999 1.000
0.583 0.992 0.998

0.429 0.971 0.992
0.540 0.992 0.999
0.979 1.000 1.000
0.999 1.000 1.000
0.817 1.000 1.000
0.930 1.000 1.000
0.787 1.000 1.000
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Table 3.14 Application to U.S. GDP

Model A: Annual U.S. GDP 1870-1994

Tb k c 0 3 P ^̂ 0.in ftp) supW9p

GS 1929 8 1.574
(6.268)

-0.103
(-4.333)**

0.018
(6.071)

0.469
(-6.105)***

18.775* 37.371***

SIC 1929 1 0.787
(5.263)

-0.059
(-2.817)

0.009
(5.047)

0.744
(-5.010)**

7.935 26.057**

Model B: Quarterly U.S. GDP 1947.1 - 1997.3

Tb k c Y 3 P in ftp) SupW,p

GS 1972.2 12 0.828
(3.359)

-0.0003
(-2.927)

0.001
(3.3216)

0.886
(-3.313)

8.567 10.979

SIC 1972.2 1 0.720
(4.030)

-0.0003
(-3.391)*

0.001
(3.920)

0.901
(-3.992)

11.498 15.950

t-statistics are in parentheses
*,**,and *** denotes significance at the 10%, 5%, and 1% significance levels respectively
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APPENDIX A: IRREGULAR UNOBSERVED COMPONENTS MODEL FOR
GDP

Here we present the Markov switching model discussed in Section 1.2. The 

model decomposes the natural log of GDP into an unobserved trend, cycle, and 

irregular component. It is a generalization of Clark’s (1987) model. Letting y, denote 

the log of GDP, we have:

y, =n,  + c , + s , i ,  

n, = g, . t + 7,-, + v, 

g, = g,.i +

= e,

i, =&*,-> +02*.-2 +u,

Vt
f "o' 0 0 o '

\

w , 0 0 ■>

o-; 0 0t -  N
e, 0 0 0 0

\ _0 0 0 0 a 'u 7

S, = {0,1}; Pr[S, = 0 1 5,., = 0] = q- Pr[S, = 11 5,., = 1] = p.

This model reduces to Clark’s model when S,=0. To anticipate our results, when we 

allow for the irregular component, the cyclical component becomes irrelevant. 

Thus we specify \ff(L)=0. Writing the model in state space for, we have:

y , = f f s A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

123

4 ,= F SiZ,_l+ o,

E{u,u, ) = QSi

where

4 , = h  g, i,

v, = [v, w, u, 0 /

H h =[1 0 5, 0]

"l 1 0 0"

F  -  ° 1 °  0
“  0  0  a

0 °  1 0

and

cr] 0 0 O'

n  =  0  0 0
0 O cr; 0

_ 0 0 0 0

Estimation of the parameters, as well as the unobserved components, is based on 

Kim’s (1994) approximate maximum likelihood algorithm. Briefly, state space 

models with Markov switching render computation of the exact likelihood function 

via the Kalman filter intractable. Kim modifies the Kalman filtering equations to 

render construction o f the Gaussian likelihood feasible. Since the state vector, , is

nonstationary, we discard the first nine sample points so that the initial guesses for the 

state vector and mean-squared error are allowed to die out. The plot in Figure 1.3 is 

from 1889-1997. Parameter estimates are as follows:
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Parameter q P <i>t a v a„ a w

Estimate 0.9811
(0.0230)

0.9776
(0.0191)

1.2467
(0.1277)

-0.3886
(0.0796)

0.0286
(0 .0 0 0 0 )

0.0581
(0 .0 0 0 2 )

0 .0 0 0 0
(0 .0 0 0 0 )

Standard errors are in parenthesis.
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APPENDIX B: STATE SPACE MODELING AND KALMAN FILTERING
FOR THE 2-STATE MODEL

In this section, we discuss representation and estimation of Model 4, based on 

Kim's (1994) method of approximate maximum likelihood estimation. We employ 

the following state space representation for equations (2.3.10)’-(2.3.14)’, and 

(2.3.15)-(2.3.17):

Measurement equation: Ay, = H%,

Transition equation: = /iSt + F£f_, + Vt

E(V,Vt ) = Q,

where

_Yi 0 A-i -A.. 1 0 0 0 0 o'
H = Y 2 0 X2 - X 2 0 0 1 0 0 0

_Y 3 0 x } - a-3 0 0 0 0 1 0

'  Ac, ' X / "v, "
0 0

x,
0 0

“1/
T ’ Fs,

0
0 . Vt = e.,

0
0

7~2j-l 0 0

Z3, 0
0 0
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* <t>l 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 <p : <t>\ 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 W u V'l 2 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 V ii P n 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 ^ 3 ,  V *

0 0 0 0 0 0 0 0 1 0

'1 0 0 0 0 0 0 0 0 o l

0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Q =
0

0

0

0

0

0

0

0

0 ?

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Then, conditional on S, = j  and 5f_, = / ,  the Kalman filter equations can be 

written as:

= f t ,  + ^ ' - * - 1  •

pH i  = f ' + e ,

'7.<ll-i> = Av< -  ff?*-!1.

/ $ ’ =

eUJ)  _  c('.y ) . pUJ)  zj-'r n (‘J)
Stir ~  St\t-l ^  ■r i|/-l 77 L //|M  J /f|/—1 ’
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PXJ ) - ( / - P i l ' H I / W  I ' 1 ,

where £,\fix is an inference on q, based on information up to time r-1, conditional on 

St = j  and S,_x = i ; is an inference on <%, based on information up to time t, 

conditional on S, = j  and S,_x = i ; PfJ'J/ and Pj^j> are the MSE matrices of £,[,{{ 

and respectively; is the conditional forecast error o f Ay, based on

information up to time r-1; f ^ J x is the conditional variance of rft^ i{ .

As noted by Harrison and Stevens (1976) and Gordon and Smith (1988) each iteration 

produces a two-fold increase in the number of cases to consider. To render the

Kalman filter operational, we need to collapse the 22 posteriors ( and Pj.J-11)

into 2 at each iteration. Collapsing requires the following approximations suggested 

by Harrison and Stevens (1976):

** Pr[S, = j \ v , ]

and

„/ Z ,U PrK - i  =<’s '
* PrtS, = i W , }

where if/, refers to information available at time t.

In order to obtain the probability terms necessary for collapsing, we perform the 

following procedure due to Hamilton (1989):

Step 1:

At the beginning of the t ‘h iteration, given Pr[SM = i \ y/,_x ] for / = 0 or 1, we can 

calculate

Pr[S, = j ,  S,_x = i | tf/,_x ] = Pr[S, = j  \ S,_x = /] Pr[S,_, = i \ if/, ],

(i» j = 0,1).

Step 2:
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Consider the joint density of Ay,, S, , and S,_, : 

f {Ay , , S, = j ,  S,_x = / 1 q/,_x) = f (Ay ,  \ S, = j , S,_x = /, v,_x) Pr[S, = j ,  S,_x = i \v,_x] 

from which the marginal density of Ay, is obtained by:

/(A y, I V,- \ ) = X!=0 Z '=o f ( Ay‘ ’ S< = J ’5 '- ' = *1 >

= 1 S‘ = J,S '-{ = i,¥ t~x) Prt5f = y’ S '~i = 11 1

where the conditional density /(Ay, 15, = j ,  S,_x = z, y/,_x) is obtained via the 

prediction-error decomposition:

f ( A y , \ S ,  =j ,S ,_x =i,y/,_x) = {27u) 2| / J ' / >| 2 e x p j - / f : { ) j.

Step 3:

Once Ay, is observed at the end of time t, we update the probability terms:

Pr[S, =j,S,_x =i\y/ ,]

= Pr[S, = /  S,_x = 1 1 y/,_x, Ay, ]

f ( S ,  = j,S,_x = i, Ay,
/(Ay, | )

/(4 v , I S, = J,S,_X = z>,_, )Pr[S, = j ,S,_x = i | y/,_x]
f (Ay,  \V t-\)

with

Pr[S, =j \yr ,  ] ^ =0 Pr[5, = j , S,_x = z \ if/,}.

To initialize the above filter, we use the steady-state probabilities given by9 

pr[50 = 0] = l ~ P  and Pr[S0 = 1] = l ~ q
2 - p - q  2 - p - q

As a by product of the above filter, we obtain the log likelihood function:

9 See Hamilton (1994, p.684)
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^ L  = £ , r=!/*(/(A yf \ y/,_x)

which can be maximized with respect to the parameters of the model.

To calculate the level o f the common permanent component, proceed as follows. 

Since the data are in deviations from their means, 8  and D = [£>, D2 A  ]' are

concentrated out o f the likelihood function. As in Stock and Watson (1991), we can 

use the steady state Kalman gain retrieve these terms in the following manner:

5  = E \ I r  ~K*H)F)~l K*£y,

"A Vi"
D = A = 4 7 - r 2

.A. r 3 .

where K* is the steady state Kalman gain10, Ex = [100...0]', and r  is the dimension 

of the state vector. Once 8  is retrieved, given AcT = [Ac, Ac2 ... Acr ] ',  and arbitrary 

initial value C0, we obtain C, = 8  + Ac, + CM , t = 1,2,..., T.

10 At each iteration o f the Kalman filter, there are 4 Kalman gain matrices. The steady state gain is 
calculated as the weighted mean o f  the 4 gain matrices in the final iteration.
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APPENDIX C: KALMAN FILTERING FOR THE 4-STATE MODEL

The state space representation of Model 5 differs from that of Model 4 in that 

f.us is now //S( 5 0 zS2, 0 0 0 0 0 0 o j . Conditional on

S\t ~ J »Sn = /*  = i, and $ 2j-i = ? ♦ die Kalman filtering equations can be

written as:
p U J ' J J ' )  _  . .  , E'C('V')
S t \ t - 1 -  '“ S , + r < s i - \ \ t - \  >

/ • ( ' /  ,y,y') _  r rp( i . i ' . j J ' )  t t >
J t \ t - \  ~  i \ i - l  n  »

eO/.y.y') _  p ( U ' . j J ' )  , p ( . U \ j , j ' )  t t <\ f ( i f . j j ' ) -i-i „(« /.y.y’)
S i | /  / r | r - I  77 L - / r | / - l  J  V r f r - I  »

= ( /  _  r 1 )h p^ - ‘' \

At each iteration, we collapse the 42 terms into 4 as follows:
-l x-i

r(y5/|/
= = j . s 2, =j ' , s , j ., =.-|y,K ('/.y.y')

' 1/

-  y> *̂ 2/ -  j  \ v A

and

p(y.y')
r 'l'

Z U Z ,* .o Pit t .  - y . ^  = / - v ,

Pr[S„ = 7,S2, = / | ^ ]

To obtain the probability terms we employ Hamilton’s (1989) filter again:

Step 1:

At the beginning of the t h iteration, given Pr[5u _, = i \ y t_K ] and Pr[5’2 /_l = i \ W i ] 

for i, i' = 0 or 1, we can calculate
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Pf(Au ~ J’^it — j  >S\j-1 —i’Sij-i ~ i  l^f-i]

= Prf^j, = y | ‘S1/_1 = i]P r[5 IJ_1 = / 1 y/t_x ]Pr[52, -  j  I = ]Pr[*̂ 2 -̂i =/ I Wi]>

( i , i ' , j , j '  = 0,1).

Step 2:

Consider the joint density of Ay,, Su, 5U_,, S2l, and S 2j_x :

f ( 4 y t ,Su = j , S 2l = j  ,S \a_x =i ,S2j_x =i  (vV-i)

= /(4V , I Su = j , S Zl = j \ S u.t = i ,SZj_t = i\yr ,_x)
* Pf[5„ = j , S Zl = j \ S u.t = i ,S2j_,

from which the marginal density of Ay, is obtained by:

/ ( A y ,  = j ' S 21 = / ’* V I  = i , S 2j . x = i '  |

= /(A y, I A„ = j ,S 2l = y\S,,_, = )
* Pr[A„ = y,S:, =j ' , Su_t = = t ' i ^ f_,]

where the conditional density of Ay, is obtained via the prediction-error 

decomposition:

/(4V i I A], = j , S 2l = j  ,SXJ_X = i ,S2j_x = i ,i//,_i),

^ r V ^ ' T
Step 3:

Once Ay, is observed at the end of time t, we update the probability terms:

M S U = / A 2, — j  ,S\j~\ = i,S 2,t-i = i I Vt\

= Pr[S,, = 7 I Si^-i = i]Prt^j,,-! = / | ^ , ] P r [ 5 2, = y  | 5 2̂ _j = i ] P r [ 5 2,_, =i \y/l_x,Ayl ]

_ f j Ay t f Su  ~ J^2t  = )  A ij.i = US2j-\ —i \Wt-\)
/(4 y , \V,-\)
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/(4V, I Su = j , S 2l = j ' , S lJ_l = 1,5,,., 
x Pr[^„ = J \ S 2I = j ' , S lJ_l =1,5,.,., | -5-/(4v, Iw ,)

with

Pr[^i/ — ~  * I V * t  ] ~ S r = o S / = o — j ’ ^ 2 t  “ 7 i^u-i ~ i  ! W i  ]

and

P r [*^2r J  ■>$2j -1 * I V i  ] — ^,_oSy=o P r ^ l '  ~ j ’^2t ~y>51,/_1 — Z>52̂ _1 — /  IV ' / ] -

Finally,

Pr[5u =  j  | ] =  £ ‘=0 Pr[5„ = y, 5,,_, = / 1 if/, ] ,

and

P rtfa  = / 1 1 = PrlSj, = / S w  = i'  IV , } ■
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